23 research outputs found

    Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation

    Get PDF
    Background. We previously reported the in vitro spontaneous transformation of human mesenchymal stem cells (MSC) generating a population with tumorigenic potential, that we termed transformed mesenchymal cells (TMC). Methodology/Principal Findings. Here we have characterized the molecular changes associated with TMC generation. Using microarrays techniques we identified a set of altered pathways and a greater number of downregulated than upregulated genes during MSC transformation, in part due to the expression of many untranslated RNAs in MSC. Microarray results were validated by qRT-PCR and protein detection. Conclusions/Significance. In our model, the transformation process takes place through two sequential steps; first MSC bypass senescence by upregulating c-myc and repressing p16 levels. The cells then bypass cell crisis with acquisition of telomerase activity, Ink4a/Arf locus deletion and Rb hyperphosphorylation. Other transformation-associated changes include modulation of mitochondrial metabolism, DNA damage-repair proteins and cell cycle regulators. In this work we have characterized the molecular mechanisms implicated in TMC generation and we propose a two-stage model by which a human MSC becomes a tumor cell

    Epithelial to Mesenchymal Transition of a Primary Prostate Cell Line with Switches of Cell Adhesion Modules but without Malignant Transformation

    Get PDF
    Background: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. Methodology/Principal Findings: In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation. Conclusions/Significance: This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation

    Telomere length and radiosensitivity in human fibroblast clones immortalized by ectopic telomerase expression

    No full text
    Telomeres, the ends of eukaryotic chromosomes, have a variable length among individuals and cell types. While studies in telomerase-deficient mice and cells showed an inverse correlation between telomere length and radiosensitivity, it is less clear whether this remains true in telomerase-proficient cells. To gain insight into this topic, we studied radiosensitivity in three telomerase immortalized fibroblast clones derived from the same cell line and characterized by different telomere length. In two clones, cen3tel4 and cen3tel5, the mean terminal restriction fragment length was ~13 and 10 kb, respectively and in the third clone, cen3pci16, it was ~4 kb, which is lower than in senescent fibroblasts. To test radiosensitivity, we determined survival to gamma-rays and the induction of chromosomal aberrations after irradiation. Neither the LD50, the gamma-ray dose that reduces survival to 50%, nor the frequency of aberrations detected in the three cell lines showed an inverse correlation with telomere length. In particular, the cen3pci16 cells, which have very short telomeres, did not show a higher sensitivity to irradiation or a greater frequency of chromosomal abnormalities compared to the other two cell lines. Our results suggest that, in the presence of telomerase activity, short telomeres are stabilized and do not cause an increase in radiosensitivity

    Stepwise neoplastic transformation of a telomerase immortalized fibroblast cell line

    No full text
    We have described recently a human fibroblast cell line immortalized through ectopic telomerase expression (cen3tel), in which the extension of the life span was associated with the appearance of chromosomal aberrations and with the ability to grow in the absence of solid support. As reported in this article, on further propagation in culture, cen3tel cells became neoplastically transformed, being able to form tumors in nude mice. The analysis of the cells, during the gradual transition toward the tumorigenic phenotype, allowed us to trace cellular and molecular changes associated with different phases of transformation. At the stage in which they were able to grow in agar, cen3tel cells had lost contact growth inhibition but still retained the requirement of serum to proliferate and were not tumorigenic in immunocompromised mice. Moreover, they showed a down-regulation of the INK4A locus and were resistant to oncogenic Ras-induced senescence but still retained a functional p53. Subsequently, cen3tel cells became tumorigenic, lost p53 function because of a mutation in the DNA-binding motif, and overexpressed c-myc. Interestingly, tumorigenic cells did not carry activating mutations either in the ras proto-oncogenes (H-ras, N-ras, and K-ras) or in B-raf. Cen3tel cells gradually became hyperdiploid but did not display centrosome abnormalities. To our knowledge, cen3tel is the first telomerase immortalized fibroblast line, which became neoplastically transformed. In this system, we could associate a down-regulation of the INK4A locus with anchorage-independent growth and with resistance to Ras-induced senescence and link p53 mutations and c-myc overexpression with tumorigenicity

    Karyotype instability and anchorage-independent growth in telomerase-immortalized fibroblasts from two centenarian individuals

    No full text
    Several reports have shown that the ectopic expression of the human telomerase catalytic subunit gene (hTERT) leads to an indefinite extension of the life span of human fibroblasts cultured in vitro without the appearance of cancer-associated changes. We infected two fibroblast strains derived from centenarian individuals with an hTERT containing retrovirus and isolated transduced massive populations (cen2tel and cen3tel). In both populations, hTERT expression reconstituted telomerase activity and extended the life span. In cen2tel, a net telomere lengthening was observed while, in cen3tel, telomeres stabilized at a length lower than that detected in senescent parental cells. Interestingly, both cen2tel and cen3tel cells developed chromosome anomalies, numerical first and structural thereafter. Moreover, cen3tel cells acquired the ability to grow in the absence of solid support, a typical feature of transformed cells. The results we present here highlight an unexpected possible outcome of cellular immortalization driven by telomerase reactivation, and indicate that, in some cases, an artificial extension of cellular replicative capacity can increase the probability of occurrence of genomic alterations, which can lead to cellular transformation
    corecore