1,055 research outputs found

    The limit set of the handlebody set has measure zero

    Get PDF
    This note fixes a small gap in Kerckhoff's proof that the limit set of the handlebody set has measure zero.Comment: 3 page

    Measurement of the Homogeneous Contact of a Unitary Fermi gas

    Full text link
    By selectively probing the center of a trapped gas, we measure the local, or homogeneous, contact of a unitary Fermi gas as a function of temperature. Tan's contact, C, is proportional to the derivative of the energy with respect to the interaction strength, and is thus an essential thermodynamic quantity for a gas with short-range correlations. Theoretical predictions for the temperature dependence of C differ substantially, especially near the superfluid transition, Tc, where C is predicted to either sharply decrease, sharply increase, or change very little. For T/T_F>0.4, our measurements of the homogeneous gas contact show a gradual decrease of C with increasing temperature, as predicted by theory. We observe a sharp decrease in C at T/T_F=0.16, which may be due to the superfluid phase transition. While a sharp decrease in C below Tc is predicted by some many-body theories, we find that none of the predictions fully accounts for the data.Comment: 5 pages, including a supplementary material section (10 pages). Rewriting of the introduction and discussion section

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/2190.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure

    Probing the muon (g-2) anomaly at the LHC in final states with two muons and two taus

    Full text link
    The longstanding muon (g2)(g-2) anomaly, as well as the persistent hints of lepton flavor universality violation in BB-meson decays, could be signaling new physics beyond the Standard Model (SM). A minimal RR-parity-violating supersymmetric framework with light third-generation sfermions (dubbed as 'RPV3') provides a compelling solution to these flavor anomalies, while simultaneously addressing other pressing issues of the SM. We propose a new RPV3 scenario for the solution of the muon (g2)(g-2) anomaly, which leads to an interesting LHC signal of μ+μτ+τ\mu^+\mu^-\tau^+\tau^- final state. We analyze the Run-2 LHC multilepton data to derive stringent constraints on the sneutrino mass and the relevant RPV coupling in this scenario. We then propose dedicated selection strategies to improve the bound even with the existing dataset. We also show that the high-luminosity LHC will completely cover the remaining muon (g2)(g-2)-preferred parameter space, thus providing a robust, independent test of the muon (g2)(g-2) anomaly.Comment: 10 pages, 5 figure

    Period 2: A Regulator of Multiple Tissue-Specific Circadian Functions

    Get PDF
    The zebrafish represents a powerful model for exploring how light regulates the circadian clock due to the direct light sensitivity of its peripheral clocks, a property that is retained even in organ cultures as well as zebrafish-derived cell lines. Light-inducible expression of the per2 clock gene has been predicted to play a vital function in relaying light information to the core circadian clock mechanism in many organisms, including zebrafish. To directly test the contribution of per2 to circadian clock function in zebrafish, we have generated a loss-of-function per2 gene mutation. Our results reveal a tissue-specific role for the per2 gene in maintaining rhythmic expression of circadian clock genes, as well as clock-controlled genes, and an impact on the rhythmic behavior of intact zebrafish larvae. Furthermore, we demonstrate that disruption of the per2 gene impacts on the circadian regulation of the cell cycle in vivo. Based on these results, we hypothesize that in addition to serving as a central element of the light input pathway to the circadian clock, per2 acts as circadian regulator of tissue-specific physiological functions in zebrafish

    The interaction between colloids in polar mixtures above Tc

    Full text link
    We calculate the interaction potential between two colloids immersed in an aqueous mixture containing salt near or above the critical temperature. We find an attractive interaction far from the coexistence curve due to the combination of preferential solvent adsorption at the colloids' surface and preferential ion solvation. We show that the ion-specific interaction strongly depends on the amount of salt added as well as on the mixture composition. Our results are in accord with recent experiments. For a highly antagonistic salt of hydrophilic anions and hydrophobic cations, a repulsive interaction at an intermediate inter-colloid distance is predicted even though both the electrostatic and adsorption forces alone are attractive.Comment: 9 pages, 6 figure

    Topological States and Adiabatic Pumping in Quasicrystals

    Full text link
    The unrelated discoveries of quasicrystals and topological insulators have in turn challenged prevailing paradigms in condensed-matter physics. We find a surprising connection between quasicrystals and topological phases of matter: (i) quasicrystals exhibit nontrivial topological properties and (ii) these properties are attributed to dimensions higher than that of the quasicrystal. Specifically, we show, both theoretically and experimentally, that one-dimensional quasicrystals are assigned two-dimensional Chern numbers and, respectively, exhibit topologically protected boundary states equivalent to the edge states of a two-dimensional quantum Hall system.We harness the topological nature of these states to adiabatically pump light across the quasicrystal. We generalize our results to higher-dimensional systems and other topological indices. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.Comment: 10 pages, 5 figures, 4 appendice
    corecore