69 research outputs found

    Analysis of the IDS Gene in 38 Patients with Hunter Syndrome: The c.879G>A (p.Gln293Gln) Synonymous Variation in a Female Create Exonic Splicing

    Get PDF
    BACKGROUND: Hunter syndrome (mucopolysaccharidosis type II, MPS II) is a rare disease inherited in an X-linked autosomal recessive pattern. It is the prevailing form of the mucopolysaccharidoses in China. Here we investigated mutations of IDS (iduronate 2-sulfatase) gene in 38 unrelated Chinese patients, one of which is a female. METHODS: Peripheral leucocytes were collected from the patients and the IDS gene was amplified to looking for the variations. For a female patient, the X chromosome status was analyzed by androgen receptor X-inactivation assay and the mutation impact on RNA level was further performed by reverse transcription polymerase chain reaction. RESULTS: We discovered that point mutations constituted the major form while mutations in codon p.R468 defined the largest number of patients in our cohort. Consistent with data from other ethnic groups, exons 9 and 3 had comparatively more mutations, while exon 2 had quite a few mutations unique to Chinese patients. Of the 30 different mutations identified, only 9 were novel: one was a premature termination mutation, i.e., c.196C>T (p.Gln66X); three were missense mutations, i.e., c.200T>C (p.Leu67Pro), c.215T>C (p.Leu72Pro), c.389C>T (p.Thr130Ile); one was a small deletion, i.e., c.1104_1122del19 (p.Ser369ArgfsX16); and one was a deletion that spanned both exons 8 and 9 deletion leading to gross structural changes in the IDS gene. In addition, a synonymous mutation c.879G>A (p.Gln293Gln) was identified in a female Hunter disease patient, which resulted in loss of the original splicing site, activated a cryptic splicing site upstream, leading to a 28 bp deletion and a premature termination at p. Tyr285GlufsX47. Together with concurrent skewed X-inactivation this was believed to facilitate the development of Hunter disease in this girl. CONCLUSIONS: In conclusion, the molecular analysis of IDS gene in Chinese patients confirmed the Hunter disease diagnosis and expanded the mutation and clinical spectrum of this devastating disorder

    The role of enzyme replacement therapy in severe Hunter syndrome—an expert panel consensus

    Get PDF
    Intravenous enzyme replacement therapy (ERT) with idursulfase for Hunter syndrome has not been demonstrated to and is not predicted to cross the blood–brain barrier. Nearly all published experience with ERT with idursulfase has therefore been in patients without cognitive impairment (attenuated phenotype). Little formal guidance is available on the issues surrounding ERT in cognitively impaired patients with the severe phenotype. An expert panel was therefore convened to provide guidance on these issues. The clinical experience of the panel with 66 patients suggests that somatic improvements (e.g., reduction in liver volume, increased mobility, and reduction in frequency of respiratory infections) may occur in most severe patients. Cognitive benefits have not been seen. It was agreed that, in general, severe patients are candidates for at least a 6–12-month trial of ERT, excluding patients who are severely neurologically impaired, those in a vegetative state, or those who have a condition that may lead to near-term death. It is imperative that the treating physician discuss the goals of treatment, methods of assessment of response, and criteria for discontinuation of treatment with the family before ERT is initiated. Conclusion: The decision to initiate ERT in severe Hunter syndrome should be made by the physician and parents and must be based on realistic expectations of benefits and risks, with the understanding that ERT may be withdrawn in the absence of demonstrable benefits
    • …
    corecore