230 research outputs found
Dynamics of a Quantum Reference Frame
We analyze a quantum mechanical gyroscope which is modeled as a large spin
and used as a reference against which to measure the angular momenta of
spin-1/2 particles. These measurements induce a back-action on the reference
which is the central focus of our study. We begin by deriving explicit
expressions for the quantum channel representing the back-action. Then, we
analyze the dynamics incurred by the reference when it is used to sequentially
measure particles drawn from a fixed ensemble. We prove that the reference
thermalizes with the measured particles and find that generically, the thermal
state is reached in time which scales linearly with the size of the reference.
This contrasts a recent conclusion of Bartlett et al. that this takes a
quadratic amount of time when the particles are completely unpolarized. We now
understand their result in terms of a simple physical principle based on
symmetries and conservation laws. Finally, we initiate the study of the
non-equilibrium dynamics of the reference. Here we find that a reference in a
coherent state will essentially remain in one when measuring polarized
particles, while rotating itself to ultimately align with the polarization of
the particles
Effect of pre-treatment with catecholamines on cold preservation and ischemia/reperfusion-injury in rats
Treatment of organ donors with catecholamines reduces acute rejection episodes and improves long-term graft survival after renal transplantation. The aim of this study was to investigate the effect of catecholamine pre-treatment on ischemia/reperfusion (I/R)- and cold preservation injury in rat kidneys. I/R-injury was induced by clamping the left kidney vessels for 60 min along with a contralateral nephrectomy. Cold preservation injury was induced by storage of the kidneys for 24 h at +4°C in University of Wisconsin solution, followed by syngeneic transplantation. Rats were pre-treated with either dopamine (DA), dobutamine (DB), or norepinephrine (2, 5, and 10 μg/kg/min, each group) intravenously via an osmotic minipump for 24 h before I/R- and cold preservation injury. Pre-treatment with DA (2 or 5 μg/kg/min) and DB (5 μg/kg/min) improved recovery of renal function after I/R-injury and dose dependently reduced mononuclear and major histocompatibility complex class II-positive cells infiltrating the kidney after I/R-injury. One day after I/R-injury, upregulation of transforming growth factor (TGF)-β 1 and 2 and phosphorylation of p42/p44 mitogen-activated protein kinases was observed in kidneys of animals treated with DA or DB. DA (5 μg/kg/min) and DB (5 μg/kg/min) pre-treatment reduced endothelial cell damage after 24 h of cold preservation. Only DA pre-treatment improved renal function and reduced renal inflammation after 24 h of cold preservation and syngeneic transplantation. Our results demonstrate a protective effect of pre-treatment with catecholamines on renal inflammation and function after I/R- or cold preservation injury. This could help to explain the potent organoprotective effects of catecholamine pre-treatment observed in human kidney transplantation
Quantum geometry and quantum algorithms
Motivated by algorithmic problems arising in quantum field theories whose
dynamical variables are geometric in nature, we provide a quantum algorithm
that efficiently approximates the colored Jones polynomial. The construction is
based on the complete solution of Chern-Simons topological quantum field theory
and its connection to Wess-Zumino-Witten conformal field theory. The colored
Jones polynomial is expressed as the expectation value of the evolution of the
q-deformed spin-network quantum automaton. A quantum circuit is constructed
capable of simulating the automaton and hence of computing such expectation
value. The latter is efficiently approximated using a standard sampling
procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The
Quantum Universe'' in honor of G. C. Ghirard
Gaussian bosonic synergy: quantum communication via realistic channels of zero quantum capacity
As with classical information, error-correcting codes enable reliable
transmission of quantum information through noisy or lossy channels. In
contrast to the classical theory, imperfect quantum channels exhibit a strong
kind of synergy: there exist pairs of discrete memoryless quantum channels,
each of zero quantum capacity, which acquire positive quantum capacity when
used together. Here we show that this "superactivation" phenomenon also occurs
in the more realistic setting of optical channels with attenuation and Gaussian
noise. This paves the way for its experimental realization and application in
real-world communications systems.Comment: 5 pages, 4 figures, one appendi
Precision medicine for suicidality: from universality to subtypes and personalization
Suicide remains a clear, present and increasing public health problem, despite being a potentially preventable tragedy. Its incidence is particularly high in people with overt or un(der)diagnosed psychiatric disorders. Objective and precise identification of individuals at risk, ways of monitoring response to treatments and novel preventive therapeutics need to be discovered, employed and widely deployed. We sought to investigate whether blood gene expression biomarkers for suicide (that is, a ‘liquid biopsy’ approach) can be identified that are more universal in nature, working across psychiatric diagnoses and genders, using larger cohorts than in previous studies. Such markers may reflect and/or be a proxy for the core biology of suicide. We were successful in this endeavor, using a comprehensive stepwise approach, leading to a wealth of findings. Steps 1, 2 and 3 were discovery, prioritization and validation for tracking suicidality, resulting in a Top Dozen list of candidate biomarkers comprising the top biomarkers from each step, as well as a larger list of 148 candidate biomarkers that survived Bonferroni correction in the validation step. Step 4 was testing the Top Dozen list and Bonferroni biomarker list for predictive ability for suicidal ideation (SI) and for future hospitalizations for suicidality in independent cohorts, leading to the identification of completely novel predictive biomarkers (such as CLN5 and AK2), as well as reinforcement of ours and others previous findings in the field (such as SLC4A4 and SKA2). Additionally, we examined whether subtypes of suicidality can be identified based on mental state at the time of high SI and identified four potential subtypes: high anxiety, low mood, combined and non-affective (psychotic). Such subtypes may delineate groups of individuals that are more homogenous in terms of suicidality biology and behavior. We also studied a more personalized approach, by psychiatric diagnosis and gender, with a focus on bipolar males, the highest risk group. Such a personalized approach may be more sensitive to gender differences and to the impact of psychiatric co-morbidities and medications. We compared testing the universal biomarkers in everybody versus testing by subtypes versus personalized by gender and diagnosis, and show that the subtype and personalized approaches permit enhanced precision of predictions for different universal biomarkers. In particular, LHFP appears to be a strong predictor for suicidality in males with depression. We also directly examined whether biomarkers discovered using male bipolars only are better predictors in a male bipolar independent cohort than universal biomarkers and show evidence for a possible advantage of personalization. We identified completely novel biomarkers (such as SPTBN1 and C7orf73), and reinforced previously known biomarkers (such as PTEN and SAT1). For diagnostic ability testing purposes, we also examined as predictors phenotypic measures as apps (for suicide risk (CFI-S, Convergent Functional Information for Suicidality) and for anxiety and mood (SASS, Simplified Affective State Scale)) by themselves, as well as in combination with the top biomarkers (the combination being our a priori primary endpoint), to provide context and enhance precision of predictions. We obtained area under the curves of 90% for SI and 77% for future hospitalizations in independent cohorts. Step 5 was to look for mechanistic understanding, starting with examining evidence for the Top Dozen and Bonferroni biomarkers for involvement in other psychiatric and non-psychiatric disorders, as a mechanism for biological predisposition and vulnerability. The biomarkers we identified also provide a window towards understanding the biology of suicide, implicating biological pathways related to neurogenesis, programmed cell death and insulin signaling from the universal biomarkers, as well as mTOR signaling from the male bipolar biomarkers. In particular, HTR2A increase coupled with ARRB1 and GSK3B decreases in expression in suicidality may provide a synergistic mechanistical corrective target, as do SLC4A4 increase coupled with AHCYL1 and AHCYL2 decrease. Step 6 was to move beyond diagnostics and mechanistical risk assessment, towards providing a foundation for personalized therapeutics. Items scored positive in the CFI-S and subtypes identified by SASS in different individuals provide targets for personalized (psycho)therapy. Some individual biomarkers are targets of existing drugs used to treat mood disorders and suicidality (lithium, clozapine and omega-3 fatty acids), providing a means toward pharmacogenomics stratification of patients and monitoring of response to treatment. Such biomarkers merit evaluation in clinical trials. Bioinformatics drug repurposing analyses with the gene expression biosignatures of the Top Dozen and Bonferroni-validated universal biomarkers identified novel potential therapeutics for suicidality, such as ebselen (a lithium mimetic), piracetam (a nootropic), chlorogenic acid (a polyphenol) and metformin (an antidiabetic and possible longevity promoting drug). Finally, based on the totality of our data and of the evidence in the field to date, a convergent functional evidence score prioritizing biomarkers that have all around evidence (track suicidality, predict it, are reflective of biological predisposition and are potential drug targets) brought to the fore APOE and IL6 from among the universal biomarkers, suggesting an inflammatory/accelerated aging component that may be a targetable common denominator
Faithful Squashed Entanglement
Squashed entanglement is a measure for the entanglement of bipartite quantum
states. In this paper we present a lower bound for squashed entanglement in
terms of a distance to the set of separable states. This implies that squashed
entanglement is faithful, that is, strictly positive if and only if the state
is entangled. We derive the bound on squashed entanglement from a bound on
quantum conditional mutual information, which is used to define squashed
entanglement and corresponds to the amount by which strong subadditivity of von
Neumann entropy fails to be saturated. Our result therefore sheds light on the
structure of states that almost satisfy strong subadditivity with equality. The
proof is based on two recent results from quantum information theory: the
operational interpretation of the quantum mutual information as the optimal
rate for state redistribution and the interpretation of the regularised
relative entropy of entanglement as an error exponent in hypothesis testing.
The distance to the set of separable states is measured by the one-way LOCC
norm, an operationally-motivated norm giving the optimal probability of
distinguishing two bipartite quantum states, each shared by two parties, using
any protocol formed by local quantum operations and one-directional classical
communication between the parties. A similar result for the Frobenius or
Euclidean norm follows immediately. The result has two applications in
complexity theory. The first is a quasipolynomial-time algorithm solving the
weak membership problem for the set of separable states in one-way LOCC or
Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show
that multiple provers are not more powerful than a single prover when the
verifier is restricted to one-way LOCC operations thereby providing a new
characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published
version, claims have been weakened from the LOCC norm to the one-way LOCC
nor
Recommended from our members
Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada
Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs
Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels
We investigate entanglement transmission over an unknown channel in the
presence of a third party (called the adversary), which is enabled to choose
the channel from a given set of memoryless but non-stationary channels without
informing the legitimate sender and receiver about the particular choice that
he made. This channel model is called arbitrarily varying quantum channel
(AVQC). We derive a quantum version of Ahlswede's dichotomy for classical
arbitrarily varying channels. This includes a regularized formula for the
common randomness-assisted capacity for entanglement transmission of an AVQC.
Quite surprisingly and in contrast to the classical analog of the problem
involving the maximal and average error probability, we find that the capacity
for entanglement transmission of an AVQC always equals its strong subspace
transmission capacity. These results are accompanied by different notions of
symmetrizability (zero-capacity conditions) as well as by conditions for an
AVQC to have a capacity described by a single-letter formula. In he final part
of the paper the capacity of the erasure-AVQC is computed and some light shed
on the connection between AVQCs and zero-error capacities. Additionally, we
show by entirely elementary and operational arguments motivated by the theory
of AVQCs that the quantum, classical, and entanglement-assisted zero-error
capacities of quantum channels are generically zero and are discontinuous at
every positivity point.Comment: 49 pages, no figures, final version of our papers arXiv:1010.0418v2
and arXiv:1010.0418. Published "Online First" in Communications in
Mathematical Physics, 201
Completeness of classical spin models and universal quantum computation
We study mappings between distinct classical spin systems that leave the
partition function invariant. As recently shown in [Phys. Rev. Lett. 100,
110501 (2008)], the partition function of the 2D square lattice Ising model in
the presence of an inhomogeneous magnetic field, can specialize to the
partition function of any Ising system on an arbitrary graph. In this sense the
2D Ising model is said to be "complete". However, in order to obtain the above
result, the coupling strengths on the 2D lattice must assume complex values,
and thus do not allow for a physical interpretation. Here we show how a
complete model with real -and, hence, "physical"- couplings can be obtained if
the 3D Ising model is considered. We furthermore show how to map general
q-state systems with possibly many-body interactions to the 2D Ising model with
complex parameters, and give completeness results for these models with real
parameters. We also demonstrate that the computational overhead in these
constructions is in all relevant cases polynomial. These results are proved by
invoking a recently found cross-connection between statistical mechanics and
quantum information theory, where partition functions are expressed as quantum
mechanical amplitudes. Within this framework, there exists a natural
correspondence between many-body quantum states that allow universal quantum
computation via local measurements only, and complete classical spin systems.Comment: 43 pages, 28 figure
- …