918 research outputs found
CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions
Thermal stability factor (delta) of recording layer was studied in
perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with
various CoFeB recording layer thicknesses and junction sizes. In all series of
p-MTJs with different thicknesses, delta is virtually independent of the
junction sizes of 48-81 nm in diameter. The values of delta increase linearly
with increasing the recording layer thickness. The slope of the linear fit is
explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure
Thermal Effects in the dynamics of disordered elastic systems
Many seemingly different macroscopic systems (magnets, ferroelectrics, CDW,
vortices,..) can be described as generic disordered elastic systems.
Understanding their static and dynamics thus poses challenging problems both
from the point of view of fundamental physics and of practical applications.
Despite important progress many questions remain open. In particular the
temperature has drastic effects on the way these systems respond to an external
force. We address here the important question of the thermal effect close to
depinning, and whether these effects can be understood in the analogy with
standard critical phenomena, analogy so useful to understand the zero
temperature case. We show that close to the depinning force temperature leads
to a rounding of the depinning transition and compute the corresponding
exponent. In addition, using a novel algorithm it is possible to study
precisely the behavior close to depinning, and to show that the commonly
accepted analogy of the depinning with a critical phenomenon does not fully
hold, since no divergent lengthscale exists in the steady state properties of
the line below the depinning threshold.Comment: Proceedings of the International Workshop on Electronic Crystals,
Cargese(2008
Domain structure in CoFeB thin films with perpendicular magnetic anisotropy
Domain structures in CoFeB-MgO thin films with a perpendicular easy
magnetization axis were observed by magneto-optic Kerr-effect microscopy at
various temperatures. The domain wall surface energy was obtained by analyzing
the spatial period of the stripe domains and fitting established domain models
to the period. In combination with SQUID measurements of magnetization and
anisotropy energy, this leads to an estimate of the exchange stiffness and
domain wall width in these films. These parameters are essential for
determining whether domain walls will form in patterned structures and devices
made of such materials
Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy
The ferromagnetism of a thin GaMnAs layer with a perpendicular easy
anisotropy axis is investigated by means of several techniques, that yield a
consistent set of data on the magnetic properties and the domain structure of
this diluted ferromagnetic semiconductor. The magnetic layer was grown under
tensile strain on a relaxed GaInAs buffer layer using a procedure that limits
the density of threading dislocations. Magnetometry, magneto-transport and
polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality
of this layer, in particular through its high Curie temperature (130 K) and
well-defined magnetic anisotropy. We show that magnetization reversal is
initiated from a limited number of nucleation centers and develops by easy
domain wall propagation. Furthermore, MOKE microscopy allowed us to
characterize in detail the magnetic domain structure. In particular we show
that domain shape and wall motion are very sensitive to some defects, which
prevents a periodic arrangement of the domains. We ascribed these defects to
threading dislocations emerging in the magnetic layer, inherent to the growth
mode on a relaxed buffer
Properties of aerosols and their wet deposition in the arctic spring during ASTAR2004 at Ny-Alesund, Svalbard
During the period of scientific campaign "Arctic Study of Tropospheric Aerosols, Clouds and Radiation 2004" (ASTAR2004), precipitation samples were collected in late spring at Ny-Alesund, Svalbard and their ionic components were analyzed in parallel with the measurement of properties of atmospheric aerosol particles at the same place. Backward trajectory analyses indicated that the air mass above the observatory initially dominated by air masses from the Arctic Ocean, then those from western Siberia and later those from Greenland and the Arctic Ocean. In the measurement period, six precipitation samples were obtained and five of them were analyzed their ionic components by ionchromatography. The concentrations of nss-sulphate in precipitations were between 1.8 and 24.6 ppm from which the scavenging ratio and scavenging coefficients were calculated using the data such as the concentrations of nss-sulphate in aerosol particles, amounts of precipitations, and the heights of precipitations obtained from radar echo data. The scavenging ratio ranged from 1.0&times;10<sup>6</sup> to 17&times;10<sup>6</sup> which are comparable values reported in other areas. A detailed comparison between precipitation events and the number concentration of aerosol particles obtained from optical particle counters suggests that the type of precipitations, i.e. rain or snow, significantly affects the number concentrations of aerosol particles
Spin Transfer Torques in MnSi at Ultra-low Current Densities
Spin manipulation using electric currents is one of the most promising
directions in the field of spintronics. We used neutron scattering to observe
the influence of an electric current on the magnetic structure in a bulk
material. In the skyrmion lattice of MnSi, where the spins form a lattice of
magnetic vortices similar to the vortex lattice in type II superconductors, we
observe the rotation of the diffraction pattern in response to currents which
are over five orders of magnitude smaller than those typically applied in
experimental studies on current-driven magnetization dynamics in
nanostructures. We attribute our observations to an extremely efficient
coupling of inhomogeneous spin currents to topologically stable knots in spin
structures
Nonlinear Conduction by Melting of Stripe-Type Charge Order in Organic Conductors with Triangular Lattices
We theoretically discuss the mechanism for the peculiar nonlinear conduction
in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2X
[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] through the melting of
stripe-type charge order. An extended Peierls-Hubbard model attached to
metallic electrodes is investigated by a nonequilibrium Green's function
technique. A novel current-voltage characteristic appears in a coexistent state
of stripe-type and nonstripe 3-fold charge orders, where the applied bias melts
mainly the stripe-type charge order through the reduction of lattice
distortion, whereas the 3-fold charge order survives. These contrastive
responses of the two different charge orders are consistent with the
experimental observations.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp
Cold SO_2 molecules by Stark deceleration
We produce SO_2 molecules with a centre of mass velocity near zero using a
Stark decelerator. Since the initial kinetic energy of the supersonic SO_2
molecular beam is high, and the removed kinetic energy per stage is small, 326
deceleration stages are necessary to bring SO_2 to a complete standstill,
significantly more than in other experiments. We show that in such a
decelerator possible loss due to coupling between the motional degrees of
freedom must be considered. Experimental results are compared with 3D
Monte-Carlo simulations and the quantum state selectivity of the Stark
decelerator is demonstrated.Comment: 7 pages, 5 figure
Classification of minimal actions of a compact Kac algebra with amenable dual
We show the uniqueness of minimal actions of a compact Kac algebra with
amenable dual on the AFD factor of type II. This particularly implies the
uniqueness of minimal actions of a compact group. Our main tools are a Rohlin
type theorem, the 2-cohomology vanishing theorem, and the Evans-Kishimoto type
intertwining argument.Comment: 68 pages, Introduction rewritten; minor correction
- …