43 research outputs found

    Power and the durability of poverty: a critical exploration of the links between culture, marginality and chronic poverty

    Get PDF

    GagCM9-Specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication In Vivo

    Get PDF
    Several lines of evidence suggest that HIV/SIV-specific CD8+ T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag45–269) that were subsequently infected with SIVsmE660. These seven Mamu-A*01+ animals developed CD8+ T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8+ T cells could not control virus replication in vivo. GagCM9-specific CD8+ T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8+ T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20–250 GagCM9-specific CD8+ T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8+ T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8+ T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8+ T cell population elicited by vaccination and infection

    Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque.

    Get PDF
    Effector memory T cell (TEM) responses display potent antiviral properties and have been linked to stringent control of simian immunodeficiency virus (SIV) replication. Since recurrent antigen stimulation drives the differentiation of CD8+ T cells toward the TEM phenotype, in this study we incorporated a persistent herpesviral vector into a heterologous prime/boost/boost vaccine approach to maximize the induction of TEM responses. This new regimen resulted in CD8+ TEM-biased responses in four rhesus macaques, three of which controlled viral replication to <1,000 viral RNA copies/ml of plasma for more than 6 months after infection with SIVmac239. Over the course of this study, we made a series of interesting observations in one of these successful controller animals. Indeed, in vivo elimination of CD8αβ+ T cells using a new CD8β-depleting antibody did not abrogate virologic control in this monkey. Only after its CD8α+ lymphocytes were depleted did SIV rebound, suggesting that CD8αα+ but not CD8αβ+ cells were controlling viral replication. By 2 weeks postinfection (PI), the only SIV sequences that could be detected in this animal harbored a small in-frame deletion in nef affecting six amino acids. Deep sequencing of the SIVmac239 challenge stock revealed no evidence of this polymorphism. However, sequencing of the rebound virus following CD8α depletion at week 38.4 PI again revealed only the six-amino acid deletion in nef. While any role for immunological pressure on the selection of this deleted variant remains uncertain, our data provide anecdotal evidence that control of SIV replication can be maintained without an intact CD8αβ+ T cell compartment

    Effective Simian Immunodeficiency Virus-Specific CD8+ T Cells Lack an Easily Detectable, Shared Characteristic ▿

    No full text
    The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8+ T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8+ T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8+ T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8+ T cells to suppress viral replication from SIVmac239-infected CD4+ T cells. Using this assay, we established an antiviral hierarchy when we compared CD8+ T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8+ T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8+ T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8+ T-cell response may be comprised of several factors

    Glycerol Monolaurate Microbicide Protection against Repeat High-Dose SIV Vaginal Challenge.

    No full text
    Measures to prevent sexual mucosal transmission are critically needed, particularly to prevent transmission to young women at high risk in the microepidemics in South Africa that disproportionally contribute to the continued pandemic. To that end, microbicides containing anti-retroviral (ARV) agents have been shown to prevent transmission, but with efficacy limited both by adherence and pre-existing innate immune and inflammatory conditions in the female reproductive tract (FRT). Glycerol monolaurate (GML) has been proposed as a microbicide component to enhance efficacy by blocking these transmission-facilitating innate immune response to vaginal exposure. We show here in an especially rigorous test of protection in the SIV-rhesus macaque model of HIV-1 transmission to women, that GML used daily and before vaginal challenge protects against repeat high doses of SIV by criteria that include virological and immunological assays to detect occult infection. We also provide evidence for indirect mechanisms of action in GML-mediated protection. Developing a sustained formulation for GML delivery could contribute an independent, complementary protective component to an ARV-containing microbicide

    Administration of GML (or placebo) for all study animals was once per day, except on each challenge day when treatment was given 1 hour prior to each of two separate inoculations of SIVmac251, resulting in two doses.

    No full text
    <p>There were 3 cohorts consisting of both treatment and control animals indicated by degree of shading (cohort 1 = lightest; cohort 2 = medium; cohort 3 = darker). Cohorts only differed in the scheduled time of pre-treatment and first and second challenge days. All cohorts received the same dose continuously for the time indicated. In addition, viral loads for uninfected animals were followed for at least one year after challenge 2.</p><p>Administration of GML (or placebo) for all study animals was once per day, except on each challenge day when treatment was given 1 hour prior to each of two separate inoculations of SIVmac251, resulting in two doses.</p
    corecore