152 research outputs found

    The role of Causality in Tunable Fermi Gas Condensates

    Full text link
    We develop a new formalism for the description of the condensates of cold Fermi atoms whose speed of sound can be tuned with the aid of a narrow Feshbach resonance. We use this to look for spontaneous phonon creation that mimics spontaneous particle creation in curved space-time in Friedmann-Robertson-Walker and other model universes.Comment: 9 pages, 2 figures. In v.3 the formalism is different from the existing arXiv versions, but the final results are unchanged. Title changed, one author added. The article will be published in the special edition of Journal of Physics: Condensed Matter on "Condensed matter analogues of cosmology

    Analogue model for quantum gravity phenomenology

    Full text link
    So called "analogue models" use condensed matter systems (typically hydrodynamic) to set up an "effective metric" and to model curved-space quantum field theory in a physical system where all the microscopic degrees of freedom are well understood. Known analogue models typically lead to massless minimally coupled scalar fields. We present an extended "analogue space-time" programme by investigating a condensed-matter system - in and beyond the hydrodynamic limit - that is in principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many elementary particles have mass, this is an essential step in building realistic analogue models, and an essential first step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore our model suggests constraints on quantum gravity phenomenology in terms of the "naturalness problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9 Sep 200

    Acoustic geometry for general relativistic barotropic irrotational fluid flow

    Full text link
    "Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.Comment: V1: 23 pages, zero figures; V2: now 24 pages, some clarifications, 2 references added. This version accepted for publication in the New Journal of Physics. (Special issue on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects"

    Signature change events: A challenge for quantum gravity?

    Full text link
    Within the framework of either Euclidian (functional-integral) quantum gravity or canonical general relativity the signature of the manifold is a priori unconstrained. Furthermore, recent developments in the emergent spacetime programme have led to a physically feasible implementation of signature change events. This suggests that it is time to revisit the sometimes controversial topic of signature change in general relativity. Specifically, we shall focus on the behaviour of a quantum field subjected to a manifold containing regions of different signature. We emphasise that, regardless of the underlying classical theory, there are severe problems associated with any quantum field theory residing on a signature-changing background. (Such as the production of what is naively an infinite number of particles, with an infinite energy density.) From the viewpoint of quantum gravity phenomenology, we discuss possible consequences of an effective Lorentz symmetry breaking scale. To more fully understand the physics of quantum fields exposed to finite regions of Euclidean-signature (Riemannian) geometry, we show its similarities with the quantum barrier penetration problem, and the super-Hubble horizon modes encountered in cosmology. Finally we raise the question as to whether signature change transitions could be fully understood and dynamically generated within (modified) classical general relativity, or whether they require the knowledge of a full theory of quantum gravity.Comment: 33 pages. 4 figures; V2: 3 references added, no physics changes; V3: now 24 pages - significantly shortened - argument simplified and more focused - no physics changes - this version accepted for publication in Classical and Quantum Gravit

    Nonlinear dynamics of the cold atom analog false vacuum

    Get PDF
    We investigate the nonlinear dynamics of cold atom systems that can in princi- ple serve as quantum simulators of false vacuum decay. The analog false vacuum manifests as a metastable vacuum state for the relative phase in a two-species Bose-Einstein con- densate (BEC), induced by a driven periodic coupling between the two species. In the appropriate low energy limit, the evolution of the relative phase is approximately governed by a relativistic wave equation exhibiting true and false vacuum configurations. In previous work, a linear stability analysis identified exponentially growing short-wavelength modes driven by the time-dependent coupling. These modes threaten to destabilize the analog false vacuum. Here, we employ numerical simulations of the coupled Gross-Pitaevski equa- tions (GPEs) to determine the non-linear evolution of these linearly unstable modes. We find that unless a physical mechanism modifies the GPE on short length scales, the analog false vacuum is indeed destabilized. We briefly discuss various physically expected correc- tions to the GPEs that may act to remove the exponentially unstable modes. To investigate the resulting dynamics in cases where such a removal mechanism exists, we implement a hard UV cutoff that excludes the unstable modes as a simple model for these corrections. We use this to study the range of phenomena arising from such a system. In particular, we show that by modulating the strength of the time-dependent coupling, it is possible to observe the crossover between a second and first order phase transition out of the false vacuum

    Mass renormalization in lattice simulations of false vacuum decay

    Get PDF
    False vacuum decay, a quantum mechanical first-order phase transition in scalar field theories, is an important phenomenon in early Universe cosmology. Recently, real-time semiclassical techniques based on ensembles of lattice simulations were applied to the problem of false vacuum decay. In this context, or any other lattice simulation, the effective potential experienced by long-wavelength modes is not the same as the bare potential. To make quantitative predictions using the real-time semiclassical techniques, it is therefore necessary to understand the redefinition of model parameters and the corresponding deformation of the vacuum state, as well as stochastic contributions that require modeling of unresolved subgrid modes. In this work, we focus on the former corrections and compute the expected modification of the true and false vacuum effective mass, which manifests as a modified dispersion relationship for linear fluctuations about the vacuum. We compare these theoretical predictions to numerical simulations and find excellent agreement. Motivated by this, we use the effective masses to fix the shape of a parametrized effective potential, and explore the modeling uncertainty associated with nonlinear corrections. We compute the decay rates in both the Euclidean and real-time formalisms, finding qualitative agreement in the dependence on the UV cutoff. These calculations further demonstrate that a quantitative understanding of the rates requires additional corrections

    Measurement of stimulated Hawking emission in an analogue system

    Full text link
    There is a mathematical analogy between the propagation of fields in a general relativistic space-time and long (shallow water) surface waves on moving water. Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. Similar arguments predict the same effect near wave horizons in fluid flow. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.Comment: 7 pages, 5 figures. This version corrects a processing error in the final graph 5b which multiplied the vertical axis by 2. The graph, and the data used from it, have been corrected. Some minor typos have also been corrected. This version also uses TeX rather than Wor

    Rotating curved spacetime signatures from a giant quantum vortex

    Get PDF
    \ua9 The Author(s) 2024.Gravity simulators1 are laboratory systems in which small excitations such as sound2 or surface waves3,4 behave as fields propagating on a curved spacetime geometry. The analogy between gravity and fluids requires vanishing viscosity2–4, a feature naturally realized in superfluids such as liquid helium or cold atomic clouds5–8. Such systems have been successful in verifying key predictions of quantum field theory in curved spacetime7–11. In particular, quantum simulations of rotating curved spacetimes indicative of astrophysical black holes require the realization of an extensive vortex flow12 in superfluid systems. Here we demonstrate that, despite the inherent instability of multiply quantized vortices13,14, a stationary giant quantum vortex can be stabilized in superfluid 4He. Its compact core carries thousands of circulation quanta, prevailing over current limitations in other physical systems such as magnons5, atomic clouds6,7 and polaritons15,16. We introduce a minimally invasive way to characterize the vortex flow17,18 by exploiting the interaction of micrometre-scale waves on the superfluid interface with the background velocity field. Intricate wave–vortex interactions, including the detection of bound states and distinctive analogue black hole ringdown signatures, have been observed. These results open new avenues to explore quantum-to-classical vortex transitions and use superfluid helium as a finite-temperature quantum field theory simulator for rotating curved spacetimes19

    Wave focusing by submerged islands and gravitational analogues

    Get PDF
    We study water waves propagating over a smooth obstacle in a fluid of varying depth, motivated by the observation that submerged islands in the ocean act as effective lenses that increase the amplitude and destructive power of tsunami waves near focal points. We show that islands of substantial height (compared to the water depth) lead to strong focusing in their immediate vicinity, and generate caustics of either cusp or butterfly type. We highlight similarities and differences with focusing of (high-frequency) gravitational waves by a neutron star. In the linear regime, the comparison is made precise through an effective-spacetime description of the island-fluid system. This description is then put to practical use: We identify caustics by solving the Raychaudhuri equation (a transport equation) along rays of the effective metric. Next, the island-fluid scattering processes are examined in detail (i.e., deflection angle, phase shifts, scattering amplitudes) using numerical simulations and analytical techniques, including the eikonal approximation and its generalisation in the form of the Gaussian beam approximation. We show that the techniques capture the key features of the simulations. Finally, we extend the eikonal approximation to the dispersive regime, demonstrating that the essential features are robust in dispersive settings. This paves the way for future exploration in a controlled laboratory set-up
    corecore