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False vacuum decay, a quantum mechanical first-order phase transition in scalar field theories, is an
important phenomenon in early Universe cosmology. Recently, real-time semiclassical techniques based on
ensembles of lattice simulations were applied to the problem of false vacuum decay. In this context, or any
other lattice simulation, the effective potential experienced by long-wavelength modes is not the same as
the bare potential. To make quantitative predictions using the real-time semiclassical techniques, it is
therefore necessary to understand the redefinition of model parameters and the corresponding deformation
of the vacuum state, as well as stochastic contributions that require modeling of unresolved subgrid modes.
In this work, we focus on the former corrections and compute the expected modification of the true and
false vacuum effective mass, which manifests as a modified dispersion relationship for linear fluctuations
about the vacuum. We compare these theoretical predictions to numerical simulations and find excellent
agreement. Motivated by this, we use the effective masses to fix the shape of a parametrized effective
potential, and explore the modeling uncertainty associated with nonlinear corrections. We compute the
decay rates in both the Euclidean and real-time formalisms, finding qualitative agreement in the
dependence on the UV cutoff. These calculations further demonstrate that a quantitative understanding
of the rates requires additional corrections.

DOI: 10.1103/PhysRevD.107.083509

I. INTRODUCTION

False vacuum decay is a fascinating phenomenon in
quantum field theory involving many of its most challeng-
ing aspects: it is dynamical, nonlinear, and nonperturbative.
It has applications to a variety of fundamental scenarios
in cosmology, and is also relevant to a broad range of
condensed matter systems. While direct experimentation
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with cosmological systems is beyond current technologies,
recent proposals to create analog relativistic false vacuum
systems in the lab [1–10] provide the exciting possibility
of experimentally probing some aspects of false vacuum
decay. To make maximal use of such experiments and
compare to theory, a thorough understanding of the
theoretical modeling of false vacuum decay is required.
The calculations in this work demonstrate the importance
of understanding renormalization effects on the properties
of the false vacuum.
Relativistic vacuum decay is the process by which a large

region of space trapped in a local potential minimum (i.e., a
false vacuum) transitions to a new state that is no longer
localized in the potential minimum. The process is expected
to occur via the formation of bubbles within the ambient
false vacuum. Inside these “true vacuum” bubbles, the field
is on the opposite side of the barrier and no longer trapped in
the false vacuum. The bubbles then expand, with the speed
of the walls rapidly approaching the speed of light. In many
contexts the bubbles eventually coalesce, resulting in a phase
of bubble collisions and the conversion of the initial false
vacuum into an (excited) state localized around the true
vacuum. In other cases, such as when the space in the false
vacuum regions is undergoing rapid accelerated expansion,
the bubbles fail to coalesce, leading to an incomplete phase
transition and a state consisting of the ambient false vacuum
with bubbles embedded within.
The standard approach to vacuum decay, referred to as

the bounce formalism [11,12], works in Euclidean time,
thus obscuring the fundamentally time-dependent nature of
the problem. In this formalism, a high degree of symmetry
is imposed on the nucleating bubbles, with contributions
from inhomogeneities assumed perturbative in ℏ and
relegated to (frequently neglected) correction terms.
Furthermore, bubble nucleations are interpreted as quantum
tunneling events. Therefore, there is no analog of classical
time evolution to describe the formation of a bubble. The
basic input in this approach is to specify a potential for the
mean field, which we will call the tree-level Euclidean
potential and denote VT. From this we can compute
expected rates of bubble nucleation and the typical profile
of a nucleated bubble.
Reference [13] introduced an alternative approach to

the problem of vacuum decay, which instead works in real
time by evolving realizations of the false vacuum forward
in time (see also [14–21] for subsequent related work).
Analogous techniques are used in a variety of other
contexts, such as preheating at the end of inflation [22–25],
evolution of dilute gas cold atom Bose-Einstein conden-
sates [26,27], relativistic heavy ion collisions [28,29], and
nonequilibrium and thermalization properties of relativistic
fields [30–32]. In this approach, the problem is treated with
classical statistical field theory by sampling and evolving
initial configurations of the false vacuum. In this frame-
work, the purely classical time evolution leads to the

dynamical formation of “true vacuum” bubbles from the
(Gaussian) realizations of the false vacuum. In analogy to
the Euclidean view, we will refer to the emergence of a
bubble in these simulations as the decay of the false
vacuum. These bubbles then expand and eventually coa-
lesce, causing the system to transition from the false
vacuum to a state localized around the true vacuum. The
distribution of bubble nucleation times is well modeled by
an exponential decay law, allowing for a straightforward
determination of the decay rate. Thus, these simulations
give an explicitly time-dependent description of the for-
mation of bubbles, providing a classical time-dependent
connection between the initial Gaussian vacuum state and
the subsequent phase of an expanding bubble. In particular,
we do not assume an initial bubble shape (unlike previous
investigations [33]), nor do we assume that a “tunneling”
event describes the sudden appearance of a bubble. Further,
since we have access to much more fine-grained informa-
tion, many additional questions that are inaccessible in
the Euclidean framework can be explored, such as the
correlation between bubble nucleation events [21]. This
approach fully captures nonlinearity (i.e., backreaction and
rescattering effects) and places no symmetry assumptions
on the resulting solutions, but does not incorporate inter-
ference effects between different initial realizations. In
addition to a potential, which we will call the bare lattice
potential and denote Vbare, the real-time approach requires
an assumption about the statistics of the initial vacuum
field fluctuations.
Summarizing, in the Euclidean approach the bubbles

are assumed to be highly symmetric and in the standard
interpretation appear via a quantum tunneling process with
no classical real-time description. Meanwhile, the semi-
classical real-time approach makes no symmetry assump-
tions about the bubbles and provides a classical description
of the moment of nucleation. However, the latter approach
is unable to capture interference between different histories.
Given the drastically different interpretations and approx-
imations used in the two approaches, we would like to
understand if they are different descriptions of the same
decay process or if they describe different mechanisms by
which bubbles nucleate in the false vacuum. A first step is
to compare the decay rates between the two approaches. If
we identify the tree-level Euclidean potential with the bare
lattice potential, we find that the decay rate extracted from
the real-time approach is much larger than that of the
Euclidean approach. Specifically, the log of the decay rate
decreases more slowly as the amplitude of the quantum
fluctuations is decreased (relative to the width of the
barrier) for the real-time simulations than the Euclidean
prediction. This raises an interesting puzzle about the
relationship between the two approaches, pointed out in
Refs. [13,15].
However, as noted in Ref. [13], identifying the tree-level

Euclidean potential with the bare lattice potential is not
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correct because it ignores important renormalization effects
associated with the lattice simulations. To make a proper
comparison of the decay rates, we must determine which
tree-level Euclidean potential corresponds to the bare lattice
potential employed by the real-time formalism. The main
focus of this paper is to make progress toward this goal.
In more detail, while the bare lattice potential correctly

encodes the dynamics for the full inhomogeneous field
realizations, to obtain the dynamics of the mean field alone,
we must integrate out the inhomogeneities. This results in a
modification of the mean field dynamics, similar to the
effects of renormalization in quantum field theory. Since
the Euclidean potential encodes the dynamics of the mean
field, it is reasonable to conjecture that the corrections to
the bare lattice potential should be included in the mapping
between the lattice and Euclidean calculations. In what
follows, we will refer to this as the effective lattice potential
and denote it Veff .
We determine the effective force felt by the spatially

averaged mean field assuming Gaussianity of the fluctua-
tions, an improvement on a one-loop approximation. From
this, we compute the effective mass squared (i.e., effective
potential curvature) for mean field values located at
symmetric minima of the bare potential. Unfortunately,
the situation is significantly more complicated when the
potential is no longer symmetric about the minimum, or if
we displace the mean field from the potential minimum. To
explore the potential impacts of these deformations on the
Euclidean decay rate, we write down some simple para-
metrizations of the full effective potential, with tunable
parameters that can be calibrated using either our analytic
calculations of the effective mass, or measurements made in
simulations. An illustration of this approach can be found
in Fig. 1. While there is some uncertainty in our theoretical
modeling, we place reasonable bounds on the sensitivity
of the Euclidean decay rate to the details of the short-
wavelength fluctuations.
Although we focus on false vacuum decay, the formal-

ism outlined here is universally applicable to tackling
renormalization issues in real-time semiclassical stochastic
lattice simulations. Therefore, the methods developed here
may also be of use in other settings, such as generating
initial conditions for preheating simulations.
The remainder of this paper is organized as follows. In

Sec. II we review the real-time lattice framework and the
particular potential we consider in this paper. In Sec. III
we compute the expected renormalization of the field mass
and compare it to results from lattice simulations, finding
excellent agreement across a range of parameters. We then
explore the possible impacts of these deformations on the
predicted Euclidean decay rate in Sec. IV. Finally, we
describe how some simple modifications of the initial
fluctuations modify the real-time decay rates extracted
from lattice simulations. We then conclude in Sec. VI.
Details of our effective potential modeling to compute the

Euclidean decay rates are provided in the Appendix.
Unless otherwise stated, we work in units with ℏ ¼ c ¼ 1
throughout.

II. STOCHASTIC LATTICE SIMULATIONS

We work within the semiclassical stochastic lattice
framework, which we now briefly review (see Ref. [13]
for further details). The key assumption is to model
quantum effects by sampling field and momentum con-
figurations of the quantum vacuum. Generating samples of
the fully self-consistent interacting vacuum is a highly
nontrivial undertaking. Therefore, we approximate the
vacuum state as Gaussian and initialize

ϕðx; t ¼ 0Þ ¼ ϕinit þ δϕ̂ ¼ ϕinit þ
1ffiffiffiffi
V

p
Xjnj≤ncut
n≠0

α̂nffiffiffiffiffiffiffiffi
2ωn

p ei
2π
Lnx

ð1aÞ

Πðx; t ¼ 0Þ ¼ δΠ̂ ¼ 1ffiffiffiffi
V

p
Xjnj≤ncut
n≠0

ffiffiffiffiffiffi
ωn

2

r
β̂nei

2π
Lnx; ð1bÞ

where α̂n and β̂n are independent complex Gaussian
random deviates satisfying hjαnj2iE ¼ 1 ¼ hjβnj2iE,
α−n ¼ α�n, β−n ¼ β�n, and h·iE denotes an ensemble average.
V is the simulation volume, and ωn is the oscillation

Bubble

(measured)

(modeled)

(measured)

FIG. 1. An illustration of how we determine the effective
potential Veff seen by long-wavelength fluctuations. We develop
analytic and empirical techniques to measure the corrections to
the curvature about the False (m2

FV) and True (m
2
TV) vacua defined

by the bare potential Vbare (light solid blue line). Modeling Veff by
an expansion that respects the periodic symmetry of the bare
potential, we use the measured m2

FV and m2
TV to fix two free

parameters. We can then explore the modeling uncertainty arising
from additional terms in the expansion (relevant in the shaded
region of the potential), which affect the properties of the critical
bubble (instanton solution) that determines the Euclidean rate
obtained from Veff .
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frequency of the nth mode. Provided the fluctuations
primarily probe the quadratic region of the local potential
minimum, we expect this to be a good approximation to the
true vacuum state. Since we work on a discrete lattice of
finite size, we have truncated the spectrum above some
wave number kcut ≡ 2π

L ncut below the Nyquist wave number
kNyq ¼ π

dx where dx is the grid spacing. For the results
presented here, we used convergence testing to verify that
kcut was sufficiently large to capture all relevant dynamical
evolution of the fluctuations. In particular, for our choice of
lattice and model parameters this demonstrates that there is
minimal transfer of power between the “short-wavelength”
modes with k > kcut and “long-wavelength” modes with
k < kcut. Note that since our lattice has a finite volume,
initializing modes directly in Fourier space does not exactly
reproduce the real space two-point correlation function.
Therefore, we also confirmed the finite box size has a
negligible effect on our results, which is expected since the
mass of the field cuts off the infrared fluctuation power per
ln k bin.1

We then propagate these initial conditions forward in
time using the classical equations of motion

dϕ
dt

¼ Π ð2aÞ

dΠ
dt

¼ ∇2ϕ −
∂V
∂ϕ

: ð2bÞ

As in our previous work [13], we use a 10th order Gauss-
Legendre integrator for time evolution, and a Fourier
collocation discretization of space (see the appendices of
Ref. [34] for more details). Expectation values of quantum
operators are approximated by a classical ensemble average
over realizations of the initial fluctuations.
The philosophy of this approach is to model quantum

effects through the randomly drawn initial conditions δϕ̂
and δΠ̂, but not directly in the time evolution. Heuristically,
we are enforcing the uncertainty principle in the initial
conditions by drawing individual field and momentum
Fourier modes as Gaussian random deviates with the
appropriate width. Meanwhile, we are neglecting interfer-
ence effects in the path integral between different classi-
cally-evolved trajectories, which are not captured by our
classical time evolution. This approach is expected to work
well when the “quantum” fluctuations are initially linear,
and at the level of reproducing operator expectation values
can be shown to incorporate the first two orders of a
systematic expansion of the full quantum dynamics in ℏ
(see for example the Supplemental Material of Ref. [13]).
In the above, we have restricted ourselves to spatially
homogeneous background solutions that are at rest. Via

appropriate generalizations of the mode functions, this
can be extended to the case with nonzero initial field
momentum, or spatial inhomogeneity. Although we will
not pursue it here, modifying the covariance structure of the
α̂k’s and β̂k’s allows us to explore nonvacuum states, such
as squeezed states or thermal states.
The stochasticity, therefore, refers to the particular

realization of the initial conditions, not additional noise
terms appearing during the time evolution. This approach is
related, at least in spirit, to alternative stochastic approaches
such as stochastic tunneling (see e.g., Ref. [35]), stochastic
inflation (see e.g., Refs. [36–38]) or the Langevin approach
to thermal field theory on the lattice (see e.g., [39–41]),
where the short-wavelength modes are modeled as addi-
tional noise contributions during the time evolution. The
primary difference is that rather than externally imposing a
model for these additional noise terms, we are self-con-
sistently solving for their dynamics as the system evolves.
For example, suppose we restrict ourselves to consideration
of the spatial average of the field, which we will refer to
as the zero mode. From the viewpoint of the effective
dynamics of the zero mode, all of the realized inhomo-
geneous modes effectively act as stochastic contributions to
the dynamics. However, rather than having to explicitly
model the dynamics of these bath modes, we are self-
consistently evaluating the statistical properties of the noise
by evolving the realized modes.
In this paper we focus on the analog false vacuum decay

potential

Vbare ¼ m2ϕ2
0

�
cos

�
ϕ

ϕ0

�
− 1þ λ2

2
sin2
�
ϕ

ϕ0

��
ð3Þ

with corresponding potential force

V 0
bare ¼ m2ϕ0

�
− sin

�
ϕ

ϕ0

�
þ λ2

2
sin

�
2
ϕ

ϕ0

��
: ð4Þ

For λ2 > 1, this potential possesses an infinite sequence of
false vacuum minima at ϕFV ¼ 2πnϕ0 and a corresponding
sequence of true vacuum minima at ϕTV ¼ ð2nþ 1Þπϕ0

with n ∈ Z. Since we have in mind the application of
this potential to false vacuum decay, in this paper we will
primarily concentrate on states initially localized around
the false vacuum ϕ ¼ 0. To make the most direct con-
nection with existing work [13,15,21], we will also
limit ourselves to one spatial dimension. We will provide
a more detailed exploration in higher dimensions in a future
publication.

III. RENORMALIZATION OF THE
FALSE VACUUM

As outlined above, we are interested in developing an
effective potential description of our lattice simulations,

1To empirically check this, we compared our results using
lattices of different spatial extents but fixed spatial resolution.
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with the goal of connecting to the potential appearing in
Euclidean calculations of the false vacuum decay rate. The
appropriate dynamical variable is therefore the mean field,
ϕ̄≡ hϕi. For lattice simulations, rather than work directly
with the potential, it is more convenient to study the
additional force experienced by ϕ̄. Roughly, this corre-
sponds to studying the derivative of the effective potential.
To obtain the effective dynamics of the mean field,

we average the equation of motion

̈ϕ̄þ hV 0
barei ¼ 0; ð5Þ

where we have assumed that the mean field is spatially
homogeneous so we can discard the Laplacian term. For
now we allow h·i to represent either an ensemble h·iE or a
volume h·iV average. In a given realization (i.e., simulation)
these two quantities deviate from each other, but if we
average the volume average over an ensemble of (finite-
volume) numerical simulations, we expect it to converge to
the full ensemble average. For notational convenience,
we define the (negative of the) effective force acting on the
mean field

Feff ≡ hV 0
barei: ð6Þ

If Feff is a function of the mean field alone we can identify
V 0
eff ¼ Feff and integrate to obtain an effective potential,

although this need not hold in general situations.
We now define ϕðx; tÞ ¼ ϕ̄ðtÞ þ δϕðx; tÞ and assume

that we can Taylor expand the potential around the
instantaneous mean field value ϕ̄, transforming hV 0

barei
into a weighted sum over the moments of δϕ. One can
resum the Gaussian contributions, and for the analog BEC
potential (3) we obtain

Feffðϕ̄Þ
m2ϕ0

¼e
−

σ2
ϕ

2ϕ2
0

�
−sin

�
ϕ̄

ϕ0

�
þe

−3
2

σ2
ϕ

ϕ2
0
λ2

2
sin

�
2
ϕ̄

ϕ0

��
þ FNG

m2ϕ0

;

ð7Þ

where σ2ϕ ≡ hδϕ2i and FNG encodes all non-Gaussian con-
tributions to the one-point distribution of δϕ. In the following
theoretical development, we will neglect the effects of
these non-Gaussian corrections. Under the assumptions of
Gaussianity and a Taylor-expandable bare potential, we have
therefore reduced the expression for the effective force
acting on the mean field to the theory of a single function
of the mean field, σ2ϕðϕ̄Þ.

A. Vacuum fluctuations

To make further progress we must provide a model
for σ2ϕ. Since we are interested in relativistic vacuum
fluctuations, we assume

hδϕ̃kδϕ̃
�
k0 iE ¼ Δk

2π

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

PS

p δk;k0 ð8aÞ

hδΠ̃kδΠ̃�
k0 iE ¼ Δk

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

PS

p
2

δk;k0 ð8bÞ

hδϕ̃kδΠ̃�
k0 iE ¼ 0: ð8cÞ

We work in the discrete limit where L is the side length of
our simulation volume and Δk ¼ 2π

L . In linear perturbation
theory we would identify m2

PS ¼ V 00
bare. However, the

presence of the realized fluctuations leads to a deformation
of the vacuum state. A key result of this work is to calculate
an improved value ofm2

PS describing the corrected vacuum.
More generally, we can allow m2

PS to be a free parameter
describing the initial state of our system, and then explore
the subsequent response of the system to this class of
(generally nonvacuum) initial conditions. In the remainder
of the paper, we will refer to this class of initial conditions
as pseudovacuum initial conditions.
It is straightforward to obtain the field variance in these

pseudovacuum states, which we denote σ2PS. Restricting to
one spatial dimension, we have

σ2PSðm2
PSÞ ¼

1

2π
ln

 
kUV þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2UV þm2
PS

p
kIR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2IR þm2

PS

p
!
; ð9Þ

where we have assumed UV (kUV) and IR (kIR) cutoffs
on the spectrum. In the context of lattice simulations, the
UV cutoff arises naturally from the spectral truncation (1)
required to initialize our fluctuations. Meanwhile, the IR
cutoff can arise either from the existence of the fundamental
mode in our simulations or the dynamical emergence of
localized spatial structures. Assuming the fundamental
mode is the relevant IR scale, and accounting for the
implicit centered binning of our Fourier modes, we have

kIR ¼ π

L
and kUV ¼ 2π

L

�
ncut þ

1

2

�
¼ kcut þ

π

L
; ð10Þ

which will be confirmed in Sec. III C below. We are
typically interested in the limits k2UV ≫ jm2

PSj and
k2IR ≪ jm2

PSj, for which

σ2PS ≈
1

4π
ln

�
4k2UV
m2

PS

�
: ð11Þ

Within this framework, we have swapped the unknown
variance σ2PS for the unknown effective mass m2

PS.

B. Renormalized false vacuum mass

Now that we have an understanding of how the fluctua-
tions modify the dynamics of the mean field, we want to
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determine how the effective mass of the field is deformed
from its bare value. There are two masses appearing in
our formulation: the mass mPS that determines the variance
of the fluctuations, and a dynamical mass associated with
the curvature of the effective potential, which we will
denote meff . Assuming the system is in a pseudovacuum
state, we have

m2
eff

m2
≡ dFeff

dϕ̄
ðϕFV; σ

2
PSðm2

PSÞÞ ¼ λ2e
−
2σ2

PS
ϕ2
0 − e

−
σ2
PS

2ϕ2
0 ; ð12Þ

where σ2PS is given by (9). The emergence of a nonlinear
algebraic equation (12) for m2

eff is a consequence of the
evenness of the potential about the minimum, which
leads to two simplifications: (i) the location of the false
vacuum does not shift in response to the presence of the
fluctuations, and (ii) derivatives of σ2PS with respect to ϕ̄ do
not appear.
In the self-consistent vacuum state, the potential curva-

ture (m2
eff ) must match the squared effective mass in the

initial conditions (m2
PS). Denoting this special value by m

2
G,

we must solve

m2
G

m2
¼ λ2e

−
2σ2

ϕ
ðm2

G
Þ

ϕ2
0 − e

−
σ2
ϕ
ðm2

G
Þ

2ϕ2
0 : ð13Þ

In the remainder of the paper, we will call this the nonlinear
Gaussian approximation.
In the absence of fluctuations, we have m2

eff ¼
V 00
bareðϕFVÞ ¼ m2ðλ2 − 1Þ≡m2

B. We obtain a simple

analytic approximation by substituting σ2PSðm2
BÞ≡ σ2B into

the rhs of (13)

m2
G;ð1Þ
m2

¼ λ2e
−2

σ2
B
ϕ2
0 − e

−1
2

σ2
B
ϕ2
0 : ð14Þ

We refer to this as the Gaussian bare mass approximation.
We can also obtain a perturbative approximation in the

fluctuation amplitudes by first expanding (12) in σ2PS. To
leading nontrivial order we have

m2
eff

m2
≈m2

Bþ
V 000ðϕFVÞ

2
σ2PS¼ λ2−1−

ð4λ2−1Þ
2

σ2PS
ϕ2
0

; ð15Þ

which we refer to as the one-loop approximation. Equating
m2

eff and m2
PS as before, we can then solve the resulting

nonlinear equation. We will call this the nonlinear one-loop
approximation and denote m2

1-loop;NL. Alternatively, we can
further approximate σ2PS ≈ σ2B to obtain

m2
1-loop;ð1Þ
m2

≈λ2−1−
�
4λ2−1

4πϕ2
0

�
ln

�
kUVþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2UVþλ2−1

p
kIRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2IRþλ2−1

p �
;

ð16Þ

which we will refer to as the one-loop bare mass
approximation.
These predictions are illustrated in Fig. 2 as ϕ−2

0 is varied,
while holding fixed the bare potential parameter λ2, as well
as the UV and IR spectral cutoffs. Since σ2ϕ=ϕ

2
0 controls the

FIG. 2. Analytic predictions for the effective mass of the false vacuum minimum, including the effect of the realized vacuum
fluctuations. In the left plot we take λ → ∞, and in the right plot λ ¼ 2. Here we have included the full nonlinear solution in the Gaussian
approximation (dark solid blue line) and one-loop approximation (dashed light blue line). We also include the bare mass approximations
for the Gaussian (solid dark purple line) and one-loop (dashed light purple line) approximations. To compare directly with our lattice
simulations below, we have taken kIR

λm ¼ π
128

and kUV
λm ¼ 2π

128
× 1023.5 in the left panel and kIR

m ¼ π
64
and kUV

m ¼ 2π
64
× 511.5 in the right panel.

While all approximation schemes agree in the small fluctuation amplitude limit, ϕ−2
0 ≪ 1, they begin to deviate significantly once σ2ϕ

becomes of order ϕ2
0 and additional terms in the expansion are required. The vertical dot-dashed lines indicate the particular choices of

ϕ0 used in Fig. 3 (left panel) and Fig. 4 (right panel) below.
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amount of nonlinear potential structure probed by the
fluctuations, as ϕ0 → ∞ we return to the limit of the bare
lattice potential. For ðσ2ϕ=ϕ2

0Þ ≪ 1 all of the approximation
schemes closely match each other. However, as ϕ0 is
decreased and the fluctuations probe more of the nonlinear
potential structure, the curves begin to deviate significantly.
For the potential considered here, we find that the one-

loop approximation always overestimates the magnitude
of the mass correction. Further, we find the one-loop
bare mass approximation (where the field variance is
estimated as that in the bare vacuum) is more accurate
than a full nonlinear solution to the one-loop equation (15).
Presumably, this is because the nonlinear one-loop solution
is implicitly including higher orders in σ2ϕ in the solution,
while not self-consistently including these higher orders
in the defining equation. Comparing to the nonlinear
Gaussian approximation, we see the Gaussian bare mass
approximation (14) provides a significant improvement
over either of the one-loop approximations.

C. Lattice measurements of the renormalized mass

We now test the preceding analytic predictions directly
in lattice simulations by studying the time evolution of field
realizations from pseudovacuum initial conditions. To
avoid causal interaction of a point with itself, we integrate
for a single light-crossing time (i.e., set our integration time
to the box length L). Since we want to study properties of
the false vacuum, in any given realization we must restrict
ourselves to times before a bubble nucleates. Therefore, in
this section we take λ2 ≫ 1 to ensure that most of our
simulations do not decay (i.e., nucleate a bubble) within a
light-crossing time. The rare simulations that decayed were
excluded from the ensemble averages. We chose lattice
cutoffs kcut sufficiently large to ensure that the flow of
fluctuation power into UV modes beyond kcut was strongly
suppressed for the duration of the simulations. As a
complementary check, we confirmed that our results were
insensitive to changes in the grid spacing at fixed side
length L and spectral cutoff kcut.
Given the preceding predictions for the shift in effective

mass of the field, we expect a corresponding shift in the
effective oscillation frequency of small amplitude modes.
Since the oscillation frequency sets the fluctuation spectrum
for linear vacuum fluctuations, a self-consistent determina-
tion of the vacuum fluctuations must account for this effect.
In Fig. 3 we show a coarse-grained demonstration of this by
studying the variance of the field fluctuations in the
simulations as we allow m2

PS in our pseudovacuum initial
conditions to vary. If the fluctuations begin in the vacuum,
they should have time-stationary statistics.2 In particular, σ2ϕ

should be time independent, at least on timescales much
shorter than the decay time of the metastable state. The left
panel of Fig. 3 shows the time evolution of σ2ϕ for a few
select values ofm2

PS. We see that in all cases considered here,
σ2ϕ initially experiences a rapid transient before undergoing
damped oscillations around a shifted time-averaged mean
σ2∞. This suggests that the initial excited state has settled into
some sort of statistically stationary state that differs from the
initial pseudovacuum. Crucially, when we choose m2

PS to be
consistent with our prediction for the modified vacuum
mass, the field variance is found to be in a stationary state as
expected, and does not undergo damped oscillations. This is
further illustrated in the right panel of the figure, where we
show the initial field variance σ20 and late-time field variance
σ2∞ as a function of the initial m2

PS. For reference, we also
include the analytic result for the initial variance σ2PS in (9)
with cutoffs kIR and kUV given by (10). The excellent
agreement with the empirically measured curve confirms the
relationship between the lattice parameters and cutoffs in the
continuum calculations. A necessary condition for the initial
state to be a vacuum is that it be time stationary. Therefore,
the initial and asymptotic variances must be equal for the
correct m2

PS. In accordance with our prediction above, we
see that the two variances coincide at the special choice
m2

PS ¼ m2
G, indicating that a self-consistent study of the

vacuum should include a modification of the initial con-
ditions. This point also appears to coincide with the
minimum of the asymptotic variance. A possible explanation
for this is that rescattering effects remain subdominant so
that each Fourier mode effectively acts as an independent
harmonic oscillator with frequency set by the renormalized
effective mass. In this case, for each Fourier mode the
pseudovacuum initial conditions with smallest time average
field variance is the one where m2

PS þ k2 matches the
oscillation frequency.
The coarse-grained view provided by the field variance

σ2ϕ indicates that the bare lattice vacuum lacks time-
translation invariance when accounting for the effects of
interactions between realized fluctuations. We now take a
more fine-grained look at the field fluctuations and study
the evolution of the individual Fourier modes. In Sec. III we
showed that the potential force acting on the homogeneous
mode of the field receives a correction that can be
interpreted as a shift in the effective mass. Although our
preceding result is not strictly applicable, we expect that
inhomogeneous modes will experience a corresponding
shift in their effective mass. In fact, for symmetric minima
we have shown that truncating the dynamical equation
for δϕ at cubic order in the amplitude (i.e., the leading
nonlinear correction), produces a shift in the frequency of
the modes whose σ2ϕ dependence matches that of the one-
loop approximation (16) above.
We illustrate the mass shift in Fig. 4, where we show the

power spectral density

2For the false vacuum, we mean that the fluctuation statistics
remain time-translation invariant on timescales much shorter than
the decay time of the metastable state.
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Pðω; kÞ ∝ hjδϕ̃ðω; kÞj2iE; ð17Þ

with δϕ̃ ∝
R
dtdxeikx−iωtϕðk; tÞ. In these spectra, the pres-

ence of small amplitude oscillatory modes with a well-
defined dispersion relationship ωðkÞ manifests as a sharp
feature that traces out the line ðk;ωðkÞÞ. For concreteness,
we show the results from simulations using the corrected
m2

PS ¼ m2
eff determined as described above.3

Figure 4 clearly demonstrates the presence of a relativ-
istic dispersion relationship ω2 ¼ k2 þm2

eff for the inho-
mogeneous field fluctuations. Further, the value of m2

eff
agrees with our predictions in the preceding section,
indicating a distortion of the effective mass of the field
due to the presence of the fluctuations. We also see that
our nonlinear Gaussian resummation (13) continues to be

valid even in regimes where the one-loop approximation
has failed.

IV. RENORMALIZATION AND THE
EUCLIDEAN DECAY RATE

In the preceding sections we showed that the effective
dynamics for the lattice mean field is modified from that
encoded in the bare lattice potential. This raises interesting
questions about the relationship between the bare potential,
Vbare, appearing in our lattice simulations and the tree-level
potential, VT, appearing in the bounce calculation. Both the
real-time and Euclidean approaches approximate the full
quantum dynamics using an expansion in ℏ [11–14].
Therefore, to compare the two formalisms, we should
truncate them at the same order in ℏ. With this in mind,
let us briefly review the nature of both expansions.
Recall that in the Euclidean formalism (see, for example,

Refs. [11,12,42]), the decay rate per unit length takes
the form

Γ
L
≈ μ2

�
SE
2πℏ

�
e−

SE
ℏ × D̄; ð18Þ

FIG. 3. Temporal properties of the field variance σ2ϕ ≡ hδϕ2i as we vary the mass m2
PS in our initial pseudovacuum states. To prevent

bubble nucleations, we consider the case λ → ∞, where the analog BEC model reduces to the sine-Gordon model. For illustration, we
have taken ϕ0 ¼ 2

ffiffiffi
2

p
, resulting in a predicted effective mass m2

G ≈ 0.83λ2m2. Left: Time evolution of σ2ϕ for a few representative
choices of initial states parametrized by m2

PS. The blue line shows a small m2
PS relative to the bare mass, the orange line the corrected

m2
PS ¼ m2

G, the green line the bare m2
PS ¼ m2

B, and the red line a large m2
PS relative to the bare mass. We see that σ2ϕ undergoes damped

oscillations around an asymptotic value σ2∞ that typically differs from the variance of the pseudovacuum initial state; only in the case of
m2

PS ¼ m2
G is the asymptotic value σ2∞ approximately equal to σ20. The numerically estimated asymptotic values are indicated by

horizontal dashed lines. Right: A comparison between the initial variance σ20 (light blue line) and late-time asymptotic variance σ2∞ (light
green line) as the mass of the initial pseudovacuum fluctuations is varied. For reference, our Gaussian resummed predictionm2

G is shown
as a vertical dashed line. Results for the specific m2

PS values show in the left plot are indicated with colored dots. We see the Gaussian
prediction for the vacuum corresponds to the special point σ20 ¼ σ2∞, which also coincides with the minimum of the asymptotic variance.
Our analytic result for the pseudovacuum variance (9) is shown as a light red line. We used numerical ensembles of 1000 lattice
simulations in a box of side length λmL ¼ 128, N ¼ 2048 lattice sites, and spectral cutoff ncut ¼ 1023. We verified the results are
insenstive to the choice of grid spacing at fixed L and ncut, and that the dependence on the box size was that expected from adjusting kIR.
We empirically estimated the sampling errors and found they were comparable to the width of the lines, consistent with the agreement
between the σ20 (empirical) and σ2PS (theory) lines.

3We also ran simulations for initial conditions specified by the
bare vacuum mass, m2

PS ¼ V 00
bareðϕFVÞ ¼ λ2 − 1, and we found

similar results for the model and lattice parameters used here.
This correspondence breaks down if we take ϕ0 sufficiently
small. A possible explanation is that σ2∞ is relatively flat around
m2

eff , so that for initial bare masses near the corrected mass the
effective mass of the field is insensitive to the initial value of the
field fluctuations.
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where we have temporarily restored ℏ. Here SE is the
Euclidean bounce action, obtained by solving the bounce
equation, and D̄ is a (dimensionless) prefactor encoding
information about fluctuations about the bounce. We will
refer to D̄ as the fluctuation determinant below. μ is some
inverse length scale characterizing the bounce that has been
factored to make D̄ dimensionless. When we set ℏ ¼ 1, μ
becomes a mass scale and will be referred to as such below.
The leading order contribution in ℏ appears nonperturba-

tively in the e−
SE
ℏ factor. Meanwhile, the first quantum

correction is encoded in the fluctuation determinant, which
is expected to have the form D̄ ∼ 1þOðℏÞ. As usual in
quantum field theory, this determinant is naively divergent
and must be renormalized.
Now, compare this to the real-time semiclassical lattice

calculations. The classical evolution captures contributions
of classical trajectories to the path integral, which appear
as e

i
ℏScl . Viewed as an ℏ expansion, this appears at the same

order as the leading order contribution in the Euclidean
formalism. Further, in our lattice simulations the initial
fluctuations have variance OðℏÞ, and thus contribute at
the same order as the corrections due to the fluctuation
determinant. Combined with the fact that D̄ encodes
information about fluctuations around a highly symmetric
saddle point (the bounce), this suggests that the lattice
effective potential force is capturing the renormalization
effects present in the fluctuation determinant.
This comparison of expansion orders suggests that

Euclidean calculations must include renormalization effects
in order to make a fair comparison with the real-time
results.4 However, the standard Euclidean expansion (18)
only includes one-loop quantum corrections, which as
demonstrated above fail to properly describe the effective
lattice potential. A reasonable conjecture is that we should
identify the effective lattice potential with an “effective
tree-level Euclidean potential” VE;eff , and perform our
bounce calculations in VE;eff . Since the lattice results
automatically include a UV cutoff, this substitution may
capture the effects of the divergent part of the fluctuation
determinant in the usual Euclidean formalism. We leave a
detailed study of the applicability of these conjectures to
future work, and here we simply explore a few potential
consequences if they are true.
Examining the Euclidean decay rate (18), we see that

fluctuation corrections can impact the predicted Euclidean
rate in three ways:
(1) modifying the Euclidean action SE,
(2) modifying the characteristic mass scale μ, or
(3) modifying the OðℏÞ correction.

Roughly, we expect that μ2 ∼ jV 00
eff;maxj is set by the

curvature of the potential at the local maximum, which
receives corrections just as the vacuum masses do.
However, for technical reasons, this shift is much more
difficult to compute than masses at the symmetric local
minima. Similarly, understanding the modification to the
OðℏÞ piece requires a detailed study of the fluctuation
determinant. Since our purpose is to get a flavor of the types
of corrections we can expect, we will focus only on the
changes to SE. A reasonable guess is that μ2’s behavior may
be similar to m2

FV and m2
TV. However, for this model even

simple combinations such as m2
TV −m2

FV and m2
TV þm2

FV
have different ϕ0 dependence, so that more detailed
investigation is needed.
With this in mind, we now explore how the Euclidean

bounce action changes if we replace the bare lattice
potential with an (approximate) effective lattice potential.
In Sec. III we showed how the curvature of the effective
lattice potential is modified at a symmetric local minimum
of the potential. A first principles derivation of the effective

FIG. 4. A demonstration of the numerical dispersion relation-
ship using the power spectral density P. Here we have self-
consistently realized the fluctuations with m2

PS ¼ m2
eff . Although

not shown explicitly, we confirmed that very similar results
are obtained by realizing bare vacuum fluctuations with
m2

PS ¼ V 00
bareðϕFVÞ, at least for the range of parameters shown

in this plot. The solid gray lines are the analytic predictions for
m2

eff using the Gaussian approximation, while the dashed lines are
using the one-loop bare mass approximation. We show results for
ϕ2
0 ¼ 9 (blue) and ϕ2

0 ¼ 2.5 (red). In the former case, the one-
loop and Gaussian resummed approximations match, and both
accurately describe the results of the simulation. However, for the
latter case the one-loop approximation deviates noticeably from
the simulation results, while the Gaussian resummation continues
to accurately capture the shifted frequency. For reference, the bare
effective mass prediction is shown as a red dashed line. All
simulations used a lattice size mL ¼ 64, N ¼ 1024 lattice sites,
spectral cutoff ncut ¼ 511, and time step dt ¼ dx

8
. The potential

parameter was λ ¼ 2. The averaging was performed over en-
sembles of 100 simulations. We remove the (rare) simulations
that nucleate bubbles through a cut on hcosϕi. To reduce
sampling artifacts, we interpolated the data points onto curves
of constant y≡ ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

G þ k2
p

and then applied a Gaussian filter
along the constant y lines.

4More precisely, the shifts in the bare parameters observed in
the lattice simulations must be accounted for in the Euclidean
calculations.
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potential requires extending these techniques to locations
on the bare potential that are neither minima nor possess
even symmetry. This significantly complicates the required
analysis, and we leave a more detailed development of the
theory to future work. Here, we instead take an effective
theory (EFT) approach and expand the effective potential in
a set of basis functions that respect the symmetries of the
bare lattice potential. The unknown coefficients in this
expansion must then be set by measurements. In keeping
with our EFT inspired approach, we computem2

TV andm2
FV

by solving for the Gaussian resummed masses at ϕ ¼ ϕ0π
and ϕ ¼ 0, respectively. These numerical “measurements”
are then used to fix two of the coefficients in our effective
potential expansions. Our potential parametrizations are
specified by the number of basis functions we retain.
Within a fixed parametrization we can explore how
modifying the properties of the fluctuations translates into
the Euclidean action. Alternatively, we can test the sensi-
tivity of our results to modeling choices by allowing some
of the unfixed parameters to float, providing us with a
“theory error bar” of sorts. The interested reader can find
more details of the potential modeling in the Appendix.
These parametrizations are not meant to be fully realistic,
but rather to give a flavor of the impact that using the
effective lattice potential in tree-level bounce calculations
can have on the inferred decay rate.
In the first two rows of Fig. 5 we show the response of

the Euclidean action to changes in the fluctuation statistics.
For illustration we use the two term truncation of the
cosine series, allowing us to uniquely fix the potential via
determination of m2

FV and m2
TV. In the absence of correc-

tions and in one spatial dimension, the Euclidean action has
the form

Sbare ¼ ϕ2
0CðλÞ; ð19Þ

where C depends only on λ, and not ϕ0 orm. In the top row
of the figure we fix the dynamic range of fluctuations,
encoded in kIR and kUV, while allowing ϕ0 to vary. This
adjusts the field variance relative to the curvature scale of
the potential minimum. Despite generating relatively large
corrections to the effective potential, we see that (in the
range of ϕ2

0 values shown in the plot) the main effect of the
corrections is to shift SE by a ϕ2

0 independent constant.
In other words, in the leading approximation to lnΓ as a
function of ϕ2

0, the intercept with respect to ϕ2
0 shifts while

holding the slope fixed. Of course, since the two curves
must converge as ϕ2

0 → ∞, this cannot be a complete
description, and we confirmed that for ϕ2

0 → ∞, the two
curves converge.
In the middle row, we additionally allow the UV cutoff

on the fluctuations to vary. The corresponding changes
to Veff at a fixed value of ϕ2

0 while k2UV is varied (in
logarithmically spaced intervals) are illustrated in the left
panel. Somewhat surprisingly, we find the behavior

observed in the first row persists throughout the range of
kUV values considered here, with the intercept of −SE with
respect to ϕ2

0 increasing with kUV.
A priori, it is rather remarkable that the seemingly

complicated changes to the effective potential manifest
in such a simple way in the Euclidean action. However, we
can provide a partial understanding applicable in the regime
where the mass deformations are sufficiently small. From
our previous analysis, we know that Δm2 ≈ −αϕ−2

0 for
some constant α and sufficiently large ϕ0. For dimensional
reasons, we expect ΔS ∼ Δm2ϕ2

0 ∼ −α, resulting in a
constant positive shift in ΔS. The detailed calculations
provided in Fig. 5 seem to indicate that similar scalings
apply even when the individual mass corrections no longer
scale as ϕ−2

0 , as shown in Fig. 2.
In the investigations described above, we truncated our

cosine expansions at second order, leaving only two
unknown coefficients. Specifying two independent mass
measurements uniquely determined the resulting effective
potential, so that any uncertainties in this specific truncation
arose solely from corrections to our computations of the
effective masses. However, since our effective potentials are
not derived from first principles, there is significant model-
ing uncertainty. Some obvious examples of this are our
choice of truncation order and our choice to directly expand
the effective potential (instead of another quantity such
as σ2ϕ) in a cosine series. To illustrate one possible effect of
this modeling uncertainty, in the bottom row of Fig. 5 we
instead truncate the expansion at third order, introducing a
single tunable parameter. As outlined in the Appendix, it is
convenient to take this free parameter to be the vacuum
energy splitting, as it is both physically transparent and
straightforward to directly relate to the expansion coeffi-
cients. Since the energy splitting can be expressed as

Δρ ¼
Z

ϕFV

ϕTV

FeffðϕÞdϕ; ð20Þ

it encodes (integrated) information about the shape of the
potential force between the two minima. In the bottom
row of Fig. 5, we allow the dimensionless energy splitting
Δρ

m2ϕ2
0

to vary, resulting in the potential deformations shown

in the left panel. From the right panel, we see that unlike
the previous cases, the primary effect of these variations
is to change the slope of SE with respect to ϕ2

0. Of course,
such modification can only apply in a limited window of
ϕ0, since as ϕ0 → ∞ at fixed kUV we must recover the
bare potential, for which the vacuum energy splitting
Δρ ¼ 2m2ϕ2

0 is known.

V. FLUCTUATION DEPENDENCE OF REAL-TIME
DECAY RATES

As shown above, the effective frequency of small
amplitude oscillations around local potential minima is
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FIG. 5. An illustration of the impact of potential deformations on the Euclidean action obtained in the bounce formalism. In all
cases, we use a bare lattice potential with λ ¼ 2 and IR spectral cutoff kIR ¼ π

64
. Unless otherwise specified, the fluctuations have a

UV spectral cutoff kUV ¼ 2π
64
× 511.5. In the left column, we illustrate the assumed potential deformations. Meanwhile, the right

column shows the corresponding response of the Euclidean action. The first two rows show the impact of changing the fluctuation
properties, assuming the two-term cosine expansion is valid, while the final row demonstrates some of the modeling uncertainty by
considering a three-term cosine expansion. The Euclidean action is only directly influenced by the parts of the potential probed by
the bounce solution. We have indicated these regions with dark shading in the left plots. The extension of the potentials beyond the
region probed by the bounce is indicated with partially transparent shading. Top row: we vary ϕ0, thus adjusting the fluctuation
amplitude relative to the bare curvature scale of the false vacuum. The effective potentials in the left panel are color coded by the
value of ϕ0, which match the corresponding Euclidean actions in the right panel. For reference, the bare lattice potential and
corresponding Euclidean action are shown as a black dashed line. Middle row: in the middle row we show the impact of adjusting
the spectral cutoff of the fluctuations. The left panel shows how the effective potential changes at a fixed value ϕ2

0 ¼ 5, again
assuming the two-term cosine expansion. The color coding increases in darkness as kUV is increased. The response in the Euclidean
for the same values of kUV, but scanning across ϕ0 values, is shown in the right panel. Bottom row: finally, the bottom row
demonstrates one possible impact of potential modeling uncertainty by extending to the three-term cosine expansion. For
concreteness, we fix the new free parameter by tuning the dimensionless energy splitting Δρ

ϕ2
0
m2, at least in the range of ϕ0 values

shown in the right plot. The color coding of the potentials signifies different choices of Δρ
ϕ2
0
m2 at fixed ϕ0, with matching coloring of

the Euclidean actions (where ϕ0 is varied).
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modified by interactions with the realized vacuum
fluctuations. The modification is well parametrized by
an effective mass squared m2

eff in a relativistic dispersion
relationship

ω2
k ¼ k2 þm2

eff : ð21Þ

The effective mass squared is itself determined by the
properties of the initial fluctuations. In a similar fashion, we
expect that the effective potential for the long-wavelength
field modes will be modified, with a resulting change to
the measured real-time decay rates. To investigate this,
we now show how the real-time decay rates respond to
two natural modifications of the initial fluctuation state.
Analysis for a broader range of parameters will be
presented in future work.
Before presenting the results, we briefly summarize

our procedure to extract the decay rate. We first determine
the volume average hcosðϕ=ϕ0ÞiV ≡ c for each simula-
tion. We then define the decay time tdecay of a single
simulation to be the first time that c crosses the threshold

value ccut ¼ 0.7. From the collection of decay times tðiÞdecay
for a given ensemble, we compute the empirical
survival probability Psurvive as a function of time.
Finally, we carry out a linear fit lnPsurvive ¼ −Γtþ A

to extract Γ.5 Our choice of spectral cutoffs was guided by
the requirement that the nucleation times in each indi-
vidual simulation were insensitive to the spatial resolu-
tion of the grid for a fixed choice of initial condition.
Since the vacuum state of a free harmonic oscillator is

dictated by its oscillation frequency, an accurate model
of the Gaussian false vacuum should use pseudovacuum
initial conditions with the self-consistently determined
m2

PS ¼ m2
eff . However, existing analyses initialize the fluc-

tuations based on linear perturbation theory with m2
PS ¼

V 00
bareðϕFVÞ, thus effectively starting the simulations from an

excited state. Further, we demonstrated above that the
field variance, and thus the effective mean field force,
undergoes nontrivial dynamical evolution if the fluctua-
tions are initialized away from the self-consistently deter-
mined vacuum. It is therefore of interest to understand if the

FIG. 6. Decay rates (per unit volume) extracted from real-time lattice simulations for two deformations of the initial conditions. For
illustration, and to compare with previous work, we have used a bare lattice potential with λ ¼ 1.2. In all cases, we restricted our fits to
times less than the light-crossing time, although we verified that our results were insensitive to using decays within three light-crossing
times. Left: we vary the pseudovacuum initial conditions by scanning the mass parameter m2

PS=m
2
B. Since the corrections to m2

B are
negative for our fiducial potential, we vary m2

PS=m
2
B in the interval [0.1, 1] in steps of size Δm2

PS=m
2
B ¼ 0.1. We see that the extracted

decay rates have almost no sensitivity to m2
PS for the parameters used here. For these simulations, we used a spectral cutoff kcut ¼ 1536π

25
ffiffi
2

p

and a box length mL ¼ 25
ffiffiffi
2

p
. Each data point was extracted from an ensemble of 1000 simulations. Right: the measured decay rates as

we vary the spectral cutoff kcut, holding all other model and lattice parameters fixed. For these simulations, we used a box sizemL ¼ 32

on pseudovacuum initial conditions with bare vacuum mass m2
PS ¼ m2ðλ2 − 1Þ. Based on the left panel, we do not expect the results to

depend on the choice ofm2
PS. The change in the decay rate is approximated by a vertical shift in lnðΓ=m2LÞ while holding the slope with

respect to ϕ2
0 fixed. This agrees with the qualitative behavior of the Euclidean rates in Fig. 5. The decay rates were extracted using

ensembles of 3000 simulations. The light shaded regions are an estimate of the statistical errors associated with the finite size of our
ensembles.

5For some choices of kcut and ϕ2
0, the survival probabilities

displayed two different exponentially decaying regimes. In these
cases, we have treated the earlier exponential as a transient and fit
the later time exponential. Specifically, if the survival fraction
after one-light-crossing time was less that 0.1, we fit to the region
0.1 ≤ Psurvive ≤ 0.6. Otherwise, we use all of the decays with
Psurvive < 0.99. We verified that the extracted decay rate curves
were insensitive to these particular choices of probability cutoffs
(with the caveat that we fit only a single exponential region), as
well as to the particular choice of threshold ccut.
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decay rate is sensitive to the choice ofm2
PS. The left panel of

Fig. 6 explores this for a range of pseudovacua initial
conditions with m2

PS ∈ ½0.1m2
B; m

2
B� and the particular

choice λ ¼ 1.2. Remarkably, we see that the measured
decay rate is independent of the initialm2

PS, at least over the
range of values considered here, which indicates that
the measured decay rates are robust to deformations of
the vacuum state arising from modifications of the effective
potential. This is despite the fact that we expect the
fluctuations to dynamically rearrange themselves, and
we have effectively started the system in an excited state.
A possible explanation is that the asymptotic field variance
is relatively flat over the range of mass deformations we
simulated, as seen (for a different choice of λ) in Fig. 3. As a
result, the system may be rapidly equilibrating itself to a
near-vacuum state that is not so different from the Gaussian
vacuum. A more definitive understanding requires further
investigation.
Finally, we examine the dependence of the real-time

decay rates on the spectral cutoff kcut used in the lattice
simulations in the right panel of Fig. 6. By increasing the
cutoff, we are explicitly modeling more and more of the
short-wavelength modes, rather than assuming they can be
captured by simple modifications to the IR dynamics. This
type of modification of the initial conditions is of great
interest, as it connects directly to the standard view of
renormalization. Analogous to the variation in the pseu-
dovacuum initial conditions, we considered a range of
values for kcut in the model with λ ¼ 1.2. Within the range
of ϕ0 values considered here, we see that impact of
changing kcut is well modeled as a constant shift in the
numerical value of lnΓ at fixed ϕ2

0, while maintaining its
slope as a function of ϕ2

0. This qualitative behavior matches
what we found for the decay rates predicted by the
Euclidean formalism as the UV cutoff kUV was increased.
We leave a more detailed comparison between the kcut
dependence in the real-time simulations and the kUV
dependence of the Euclidean rates to future work. For
now we simply note that this can provide either a nontrivial
way to differentiate the predictions of the two approaches,
or an additional parameter to constrain our effective
potential construction.

VI. CONCLUSIONS

We studied renormalization effects that result from
realized vacuum fluctuations in nonlinear lattice simula-
tions. Our focus is on relativistic scalar fields sitting at local
potential minima. First, we derived a quantitative prediction
for the shift in the effective mass of the field and compared
this prediction to measurements of oscillation frequencies
in lattice simulations, finding excellent agreement. Further,
we demonstrated the variance of the field fluctuations
was constant in time for this special choice of mass—a
necessary condition for a vacuum state. We then used our

calculations of the mass modifications to partially fix the
shape of the modified effective potential and studied the
resulting changes to the false vacuum decay rates Γ
predicted by the Euclidean formalism, showing reasonable
deformations can both shift the overall scale and slope of
lnΓ with respect to ϕ2

0. Finally, we considered the sensi-
tivity of decay rates measured in real-time simulations to
variations of the effective mass (m2

PS) and spectral cutoff
(kcut) defining the initial fluctuation spectra. The measured
decay rates were insensitive to the specific choice of m2

PS,
but had a similar dependence on kcut as the Euclidean rates.
Fully understanding the impact of these fluctuations on
predictions of measurable quantities (such as decay rates) is
important for comparing the results of real-time lattice
simulations both with other theoretical approaches and
with experiments. In light of upcoming analog relativistic
false vacuum decay experiments [1–10], these studies are
particularly important to make optimal use of the exper-
imental results.
Under the assumption of Gaussian fluctuations, we

obtained the form of the effective potential force in terms
of the field fluctuation variance. From this, we derived the
expected change in the effective mass of the field at the
local minima of the potential. We compared these analytic
predictions to full nonlinear lattice simulations, and found
excellent agreement across the range of parameters
explored here. In particular, the regime of validity of our
Gaussian resummation approach was significantly larger
than the one-loop approximation. If we allow for increas-
ingly large fluctuation amplitudes, we expect non-Gaussian
corrections to become important, but we leave an explora-
tion of this regime to future work.
Motivated by these observed modifications to the effec-

tive mass, we studied possible impacts on the decay rate
predicted by the Euclidean formalism. The periodicity and
symmetry properties of the bare potential motivated an
expansion of the effective potential in a cosine basis.
Truncating this expansion at second order allowed us to
fix the potential coefficients using the true and false
vacuum masses predicted by our formalism. Under these
assumptions, we found that the primary effect of the
renormalization corrections was to shift the Euclidean
action by a ϕ0 independent, but kcut dependent constant.
Finally, we explored sensitivity to our specific modeling
choice by including an additional term in the expansion and
fixing it by allowing the vacuum energy splitting to vary.
We found that this modification adjusted the slope of the
Euclidean action with respect to ϕ2

0. These findings
motivate a more detailed study of the impacts renormal-
ization corrections can have on the Euclidean action, which
we leave to future work.
Finally, we explored the impact of modifying the

fluctuation content on the decay rates extracted from
lattice simulations. In particular, we considered the sensi-
tivity of the decay rate to two deformations of the initial
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conditions: (i) a variation in the initial pseudovacuum initial
mass, and (ii) changes to the spectral cutoff kcut. We found
the decay rate was insensitive to the initial mass used in the
spectrum. Meanwhile, increasing the spectral cutoff kcut led
to an approximately ϕ0 independent shift in the logarithmic
decay rate. This latter observation matches the qualitative
behavior observed in the Euclidean decay rates under
variations of kcut.
This work suggests a number of future directions. While

we presented some simplified models for the renormaliza-
tion effects in the effective potential, it would be interesting
to perform a more systematic construction of the potential
away from the minimum, including the effects of the
non-Gaussian contributions neglected here. This includes
pushing the fluctuations into a regime where the Gaussian
approximation begins to fail. It is also of interest to
understand how the fluctuations restructure themselves
when starting from an excited pseudovacuum state.
Further, the potential considered here was special in the
sense that the local minima were symmetric. Extending the
analysis to asymmetric minima introduces new effects,
which will be presented in future work. Finally, it is of
interest to more rigorously explore the connection the
effective lattice potential studied here, and the effective
potential identified in Euclidean path integral calculations.
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APPENDIX: MODELING EFFECTIVE
POTENTIAL CORRECTIONS

In this appendix we briefly present our models for the
renormalization corrections arising from the presence of

realized vacuum fluctuations on the lattice. These models
were used to study the sensitivity of the bounce action to
RG corrections in Sec. IV. A full nonperturbative analysis is
beyond the scope of this paper, and the approximations
presented here are meant to illustrate the effects that may
arise in a more thorough analysis.
Before detailing our specific models, let’s first consider

some of the basic properties that the effective potential
should possess, at least when considering the effect of
ensemble averaged fluctuations. The analog BEC potential
considered here is periodic, and has even symmetry about
both the false vacua (at ϕFV ¼ 2πiϕ0 for i ∈ Z) and true
vacua (at ϕTV ¼ ð2iþ 1Þπϕ0 for i ∈ Z). As a result, the
effective potential should itself be periodic, with minima in
the same locations. Similar considerations also extend to
expansions of the field variance.
Given the requirements above, it is natural to expand the

effective potential in a cosine basis

Veff ¼ VFV þ
X∞
n¼1

cn

�
cos

�
n
ϕ

ϕ0

�
− 1

�
; ðA1Þ

where we have enforced VeffðϕFVÞ ¼ VFV independent of
the parameters cn. Alternatively, we can view this as an
expansion of the effective force in a sine basis

Feff ¼
X∞
n¼1

−n
cn
ϕ0

sin

�
n
ϕ

ϕ0

�
: ðA2Þ

The parameters cn should be set either from detailed first
principles calculations, or alternatively by calibrating the
model to a collection of measurements.

1. Calibration to effective mass measurements

A full first principles calculation of the cn’s is beyond the
scope of this paper. However, we have an empirically
verified theoretical understanding of the effective masses
around symmetric potential minima. Therefore, we take a
more pedestrian approach and assume the squared effective
masses at the false (m2

FV) and true (m2
TV) vacua are known,

and use these to fix the unknown coefficients in our
potential expansions.
For the case of the cosine expansion, the expansion

coefficients cn must be calibrated so that V 00
effð0Þ ¼ m2

FV
and V 00

effðπÞ ¼ m2
TV. At this level of approximation, we

can then uniquely fix the potential by truncating after the
n ¼ 2 term

Veff

m2ϕ2
0

¼ VFV

m2ϕ2
0

þm2
TV −m2

FV

2m2

�
cos

�
ϕ

ϕ0

�
− 1

�

−
m2

TV þm2
FV

8m2

�
cos

�
2
ϕ

ϕ0

�
− 1

�
; ðA3Þ
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where the integration constant VFV is fixed to the value of the potential at the false vacuum. Alternatively, we could continue
to incorporate additional information or uncertainties by including additional terms in the expansion. For example,
truncating at third order and assuming we have also measured the energy splitting between the false and true vacuum,
we have

Veff

m2ϕ2
0

¼ VFV

m2ϕ2
0

þ
�
m2

TV −m2
FV

2m2
−

9

16

�
m2

TV −m2
FV

m2
−

Δρ
m2ϕ2

0

���
cos

�
ϕ

ϕ0

�
− 1

�
ðA4Þ

−
m2

TV þm2
FV

8m2

�
cos

�
2
ϕ

ϕ0

�
− 1

�
þ 1

16

�
m2

TV −m2
FV

m2
−

Δρ
m2ϕ2

0

��
cos

�
3
ϕ

ϕ0

�
− 1

�
; ðA5Þ

where

Δρ≡ VFV − VTV ¼ Veffð0Þ − VeffðπÞ: ðA6Þ

In the absence of corrections (i.e., the bare limit), we have ðm2
TV −m2

FVÞϕ2
0 ¼ 2m2ϕ2

0 ¼ Δρ. Making this substitution
reduces the n ¼ 3 expansion to the n ¼ 2 expansion.
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