672 research outputs found

    Deceleration and Dispersion of Large-scale Coronal Bright Fronts

    Full text link
    One of the most dramatic manifestations of solar activity are large-scale coronal bright fronts (CBFs) observed in extreme ultraviolet (EUV) images of the solar atmosphere. To date, the energetics and kinematics of CBFs remain poorly understood, due to the low image cadence and sensitivity of previous EUV imagers and the limited methods used to extract the features. In this paper, the trajectory and morphology of CBFs was determined in order to investigate the varying properties of a sample of CBFs, including their kinematics and pulse shape, dispersion, and dissipation. We have developed a semi-automatic intensity profiling technique to extract the morphology and accurate positions of CBFs in 2.5-10 min cadence images from STEREO/EUVI. The technique was applied to sequences of 171A and 195A images from STEREO/EUVI in order to measure the wave properties of four separate CBF events. Following launch at velocities of ~240-450kms^{-1} each of the four events studied showed significant negative acceleration ranging from ~ -290 to -60ms^{-2}. The CBF spatial and temporal widths were found to increase from ~50 Mm to ~200 Mm and ~100 s to ~1500 s respectively, suggesting that they are dispersive in nature. The variation in position-angle averaged pulse-integrated intensity with propagation shows no clear trend across the four events studied. These results are most consistent with CBFs being dispersive magnetoacoustic waves.Comment: 15 pages, 18 figure

    Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics

    Full text link
    We model the propagation of a coronal shock wave, using nonlinear geometrical acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach and takes into account the main properties of nonlinear waves: i) dependence of the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the wave energy, and iii) progressive increase in the duration of solitary shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves along the solar surface in the simplest solar corona model. The calculations reveal deceleration and lengthening of the waves. In contrast, waves considered in the linear approximation keep their length unchanged and slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic

    Shock-related radio emission during coronal mass ejection lift-off?

    Full text link
    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-metric radio burst corresponds to a moving, wide emission front in the radio images, which is normally interpreted as a signature of a propagating shock wave. A decimetric-metric type II burst where only the second harmonic lane is visible could explain the observations. After long-lasting activity in the active region, the hot and dense loops could be absorbing or suppressing emission at the fundamental plasma frequency. The observed burst speed suggests a super-Alfvenic velocity for the burst driver. The expanding and opening loops, associated with the flare and the early phase of CME lift-off, could be driving the shock. Alternatively, an instantaneous but fast loop expansion could initiate a freely propagating shock wave. The later, complex-looking decametre-hectometre wave type III bursts indicate the existence of a propagating shock, although no interplanetary type II burst was observed during the event. The data does not support CME bow shock or a shock at the flanks of the CME as the origin of the fast-drift decimetric-metric radio source. Therefore super-Alfvenic loop expansion is the best candidate for the initiation of the shock wave, and this result challenges the current view of metric/coronal shocks originating either in the flanks of CMEs or from flare blast waves.Comment: 4 pages, 3 figures, accepted by A&A (Research Note

    Craniopharyngioma

    Get PDF
    Craniopharyngiomas are rare malformational tumours of low histological malignancy arising along the craniopharyngeal duct. The two histological subtypes, adamantinomatous craniopharyngioma (ACP) and papillary craniopharyngioma (PCP), differ in genesis and age distribution. ACPs are diagnosed with a bimodal peak of incidence (5-15 years and 45-60 years), whereas PCPs are restricted to adults mainly in the fifth and sixth decades of life. ACPs are driven by somatic mutations in CTNNB1 (encoding β-catenin) that affect β-catenin stability and are predominantly cystic in appearance. PCPs frequently harbour somatic BRAFV600E mutations and are typically solid tumours. Clinical manifestations due to increased intracranial pressure, visual impairment and endocrine deficiencies should prompt imaging investigations, preferentially MRI. Treatment comprises neurosurgery and radiotherapy; intracystic chemotherapy is used in monocystic ACP. Although long-term survival is high, quality of life and neuropsychological function are frequently impaired due to the close anatomical proximity to the optic chiasm, hypothalamus and pituitary gland. Indeed, hypothalamic involvement and treatment-related hypothalamic lesions frequently result in hypothalamic obesity, physical fatigue and psychosocial deficits. Given the rarity of these tumours, efforts to optimize infrastructure and international collaboration should be research priorities

    Catalytic co oxidation and H2_{2}O2_{2} direct synthesis over pd and pt-impregnated titania nanotubes

    Get PDF
    Titania nanotubes (TNTs) impregnated with Pd and Pt nanoparticles are evaluated as heterogeneous catalysts in different conditions in two reactions: catalytic CO oxidation (gas phase, up to 500 °C) and H2_{2}O2_{2} direct synthesis (liquid phase, 30 °C). The TNTs are obtained via oxidation of titanium metal and the intermediate layer-type sodium titanate Na2_{2}Ti3_{3}O7_{7}. Thereafter, the titanate layers are exfoliated and show self-rolling to TNTs, which, finally, are impregnated with Pd or Pt nanoparticles at room temperature by using Pd(ac)2_{2} and Pt(ac)2_{2}. The resulting crystalline Pd/TNTs and Pt/TNTs are realized with different lengths (long TNTs: 2.0–2.5 µm, short TNTs: 0.23–0.27 µm) and a specific surface area up to 390 m2^{2}/g. The deposited Pd and Pt particles are 2–5 nm in diameter. The TNT-derived catalysts show good thermal (up to 500 °C) and chemical stability (in liquid-phase and gas-phase reactions). The catalytic evaluation results in a low CO oxidation light-out temperature of 150 °C for Pt/TNTs (1 wt-%) and promising H2_{2}O2_{2} generation with a productivity of 3240 molH2O2_{H2O2} kgPd_{Pd}1^{-1}h1^{-1} (Pd/TNTs, 5 wt-%, 30 °C). Despite their smaller surface area, long TNTs outperform short TNTs with regard to both CO oxidation and H2_{2}O2_{2} formation

    Precedence-constrained scheduling problems parameterized by partial order width

    Full text link
    Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1-2):533-562), we show that P2|prec,pj{1,2}p_j{\in}\{1,2\}|CmaxC_{\max}, the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of kk other given words, is W[2]-hard parameterized by kk, thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75-82), we show that the more general Resource-Constrained Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.Comment: 14 pages plus appendi

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs

    Full text link
    We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio
    corecore