5,703 research outputs found

    Strong Coupling Theory of Two Level Atoms in Periodic Fields

    Get PDF
    We present a new convergent strong coupling expansion for two-level atoms in external periodic fields, free of secular terms. As a first application, we show that the coherent destruction of tunnelling is a third-order effect. We also present an exact treatment of the high-frequency region, and compare it with the theory of averaging. The qualitative frequency spectrum of the transition probability amplitude contains an effective Rabi frequency.Comment: 4 pages with 3 figure

    Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems

    Full text link
    We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions. We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation. We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders of magnitude with respect to the Magnus expansion.Comment: 4 pages, 2 figure

    Statistical Mechanics of semi-classical colored Objects

    Get PDF
    A microscopic model of deconfined matter based on color interactions between semi-classical quarks is studied. A hadronization mechanism is imposed to examine the properties and the disassembly of a thermalized quark plasma and to investigate the possible existence of a phase transition from quark matter to hadron matter.Comment: Submitted to Phys. Lett.

    Crossover from Single-Ion to Coherent Non-Fermi Liquid Behavior in Ce1x_{1-x}Lax_xNi9_9Ge4_4

    Full text link
    We report specific heat and magneto-resistance studies on the compound Ce1x{}_{1-x}Lax{}_xNi9{}_9Ge4{}_4 for various concentrations over the entire stoichiometric range. Our data reveal single-ion scaling with Ce-concentration between x=0.1x = 0.1 and 0.95. Furthermore, CeNi9{}_9Ge4{}_4 turns out to have the largest ever recorded value of the electronic specific heat Δc/T\Delta c/T \approx 5.5 J K2mol1\rm K^{-2}mol^{-1} at T=0.08T=0.08 K which was found in Cerium f-electron lattice systems. In the doped samples Δc/T\Delta c/T increases logarithmically in the temperature range between 3 K and 50 mK typical for non-Fermi liquid (nFl) behavior, while ρ\rho exhibits a Kondo-like minimum around 30 K, followed by a single-ion local nFl behavior. In contrast to this, CeNi9{}_9Ge4{}_4 flattens out in Δc/T\Delta c/T below 300 mK and displays a pronounced maximum in the resistivity curve at 1.5 K indicating a coherent heavy fermion groundstate. These properties render the compound Ce1x{}_{1-x}Lax{}_xNi9{}_9Ge4{}_4 a unique system on the borderline between Fermi liquid and nFl physics.Comment: 2 pages, 3 figures, SCES0

    Extension of the chiral perturbation theory meson lagrangian to order P6^{6}

    Get PDF
    We have derived the most general chirally invariant Lagrangian {\cal L}_6 for the meson sector at order p^6. The result provides an extension of the standard Gasser-Leutwyler Lagrangian {\cal L}_4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The 'equation of motion' terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p^6 contributions to simple processes

    Unusual Non-Fermi Liquid Behavior of Ce1x_{1-x}Lax_{x}Ni9_{9}Ge4_4 Analyzed in a Single Impurity Anderson Model with Crystal Field Effects

    Get PDF
    CeNi9_{9}Ge4_4 exhibits unusual non-Fermi liquid behavior with the largest ever recorded value of the electronic specific heat ΔC/T5.5\Delta C/T \cong 5.5 JK2^{-2}mol1^{-1} without showing any evidence of magnetic order. Specific heat measurements show that the logarithmic increase of the Sommerfeld coefficient flattens off below 200 mK. In marked contrast, the local susceptibility Δχ\Delta\chi levels off well above 200 mK and already becomes constant below 1 K. Furthermore, the entropy reaches 2RRln2 below 20 K corresponding to a four level system. An analysis of CC and χ\chi was performed in terms of an SU(N=4)SU(N=4) single impurity Anderson model with additional crystal electric field (CEF) splitting. Numerical renormalization group calculations point to a possible consistent description of the different low temperature scales in Δc\Delta c and Δχ\Delta \chi stemming from the interplay of Kondo effect and crystal field splitting.Comment: 2 pages, 2 figure

    Virtual Compton scattering off the nucleon at low energies

    Get PDF
    We investigate the low-energy behavior of the four-point Green's function Γμν\Gamma^{\mu\nu} describing virtual Compton scattering off the nucleon. Using Lorentz invariance, gauge invariance, and crossing symmetry, we derive the leading terms of an expansion of the operator in the four-momenta qq and qq' of the initial and final photon, respectively. The model-independent result is expressed in terms of the electromagnetic form factors of the free nucleon, i.e., on-shell information which one obtains from electron-nucleon scattering experiments. Model-dependent terms appear in the operator at O(qαqβ)O(q_\alpha q'_\beta), whereas the orders O(qαqβ)O(q_\alpha q_\beta) and O(qαqβ)O(q'_\alpha q'_\beta) are contained in the low-energy theorem for Γμν\Gamma^{\mu\nu}, i.e., no new parameters appear. We discuss the leading terms of the matrix element and comment on the use of on-shell equivalent electromagnetic vertices in the calculation of ``Born terms'' for virtual Compton scattering.Comment: 26 pages, RevTex, to appear in Phys. Rev.

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure
    corecore