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We investigate the low-energy behavior of the four-point Green’s fundtit¢hdescribing virtual Compton
scattering off the nucleon. Using Lorentz invariance, gauge invariance, and crossing symmetry, we derive the
leading terms of an expansion of the operator in the four-momgratadq’ of the initial and final photon,
respectively. The model-independent result is expressed in terms of the electromagnetic form factors of the free
nucleon, i.e., on-shell information which one obtains from electron-nucleon scattering experiments. Model-
dependent terms appear in the operatdbéqaq;;), whereas the orde®(q,0,) andO(q;q/;) are contained
in the low-energy theorem fdr*”, i.e., no new parameters appear. We discuss the leading terms of the matrix
element and comment on the use of on-shell equivalent electromagnetic vertices in the calculation of “Born
terms” for virtual Compton scatteringS0556-28186)02108-3

PACS numbds): 13.40.Gp, 13.60.Fz, 14.20.Dh

[. INTRODUCTION parametrized in terms of two new structure constants, the
electric and magnetic polarizabilities of the nucldere, for

Low-energy theorem$LET'’s) play an important role in example, Ref[4]).
studies of properties of particles. Based on a few general As in all studies with electromagnetic probes, the possi-
principles, they determine the leading terms of the low-bilities to investigate the structure of the target are much
energy amplitude for a given reaction in terms of global,greater if virtual photons are used. A virtual photon allows
model-independent properties of the particles. Clearly, thi®ne to vary the three-momentum and energy transfer to the
provides a constraint for models or theories of hadron structarget independently. Therefore it has recently been proposed
ture: unless they violate these general principles they mugp also use “virtual Compton scatteringVCS) as a means
reproduce the predictions of the low-energy theorem. On th&o study the structure of the nucle¢b—7]. The proposed
other hand, the low-energy theorems also provide useful correaction isp(e,e’p)y, i.e., in addition to the scattered elec-
straints for experiments. Experimental studies designed ttron also the recoiling proton is detected to completely de-
investigate particle properties beyond the global guantitie¢ermine the kinematics of the final state consisting of a real
and to distinguish between different models must be carriegghoton and a proton. It is the purpose of this work to extend
out with sufficient accuracy at low energies to be sensitive tdhe standard low-energy theorem for Compton scattering of
the higher-order terms not predicted by the theorems. Anreal photons to the general case where one or both photons
other option is, of course, to go to an energy regime wherare virtual. The latter would be the case, e.g., in the reaction
the low-energy theorems do not apply anymore and modele™ +p—e~ + (e~ +e*) +p. We will refer to both possibili-
dependent terms in the theoretical predictions are importanties as “VCS.”

The best-known low-energy theorem for electromagnetic There are several different approaches to derive the LET
interactions is the theorem for “Compton scatteringCS  for Compton scattering of real photons. One was first used
of real photons off a nucleofil—3]. Based on the require- by Low[1]. It made use of the fact that in terms of “unitarity
ment of gauge invariance, Lorentz invariance, and crossingiagrams” the scattering amplitude is dominated by the
symmetry, it specifies the terms in the low-energy scatteringingle-nucleon intermediate state. In such unitarity diagrams,
amplitude up to and including terms linear in the photonnot to be confused with Feynman diagrams, all intermediate
momentum. The coefficients of this expansion are expressestates are on their mass shil]. Lorentz invariance and
in terms of global properties of the nucleon: its mass, chargegauge invariance then allow a prediction for the amplitude to
and magnetic moment. In experiments, one can make théirst order in the frequency. Another approakh3], first
photon momentum, the kinematical variable in which oneused by Gell-Mann and Goldbergg®], relies on a com-
expands, small to ensure the convergence of the expansigetely covariant description in terms of the basic building
and to allow for a direct comparison with the data. By in- blocks of electromagnetic vertices and nucleon propagators.
creasing the energy of the photon one will become sensitivéhey split the amplitude into two classes,andB: classA
to terms that depend on details of the structure of the nucleogonsists of one-particle-reducible contributions that can be
beyond the global properties. Terms of second order in théuilt up from dressed photon-nucleon vertices and dressed
frequency, which are not determined by this theorem, can baucleon propagators. ClasB contains all one-particle-
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irreducible two-photon diagrams, where the second photofeading-order term of the unknown claB<ontribution in an
couples into the dressed vertex of the first one. Applicatiorexpansion in both the initial and final photon momenta. Fur-
of two Ward-Takahashi identities, one relating the photonthermore, with the help of crossing symmetry a definite pre-
nucleon vertex operator to the nucleon propagator, the otheliction can be made concerning the order at which one ex-
relating the irreducible two-photon vertex to the dressed oneP€cts model-dependent terms.
photon vertex, then lead to the same result for the leading Our work is organized as follows. We start out in Sec. ||
powers of the low-energy amplitude. One can use yet anPy om_JtIining the general structure of the VCS Green'’s func-
other technique introduced by Lof®] to describe brems- tion in the framework of Gell-Mann and Goldberger. We
strahlung processes. This technique relies on the observati®@te the ingredients for the derivation of the LET, namely,
that poles in the photon momentum can only be due to photroSsing symmetry and gauge invariance. Secnon 1 den_ves
ton emission from external nucleon lines of the scatteringh® LET for virtual photon Compton scattering and we dis-
amplitude. Low’s method has, in a modified form, also beerfuss the leading te_rms of the matrix element for the reaction
widely used in the framework of partially conserved axial-€ TP—& +p+ v in the center-of-mass frame. As the no-
vector current§PCAC) [10]. tion qf “Born te_rms” is |mportant_for the LET, we comment
So far, there have been only a few investigations of thé®n th|§ aspect in Sec. IV and point out gmb|gumes that arise
general VCS matrix element, since most calculations werd? their definition, both for real and virtual photons. Our
restricted to the Compton scattering of real photond.11 results are summarized and put into perspective in Sec. V.
electron-proton bremsstrahlung was calculated in first-order

Born approximation. The photon scattering amplitude, for Il. STRUCTURE OF THE VIRTUAL COMPTON

one photon virtual and the other one real, was analyzed in gcATTERING TENSOR AND GAUGE INVARIANCE
terms of 12 invariant functions of three scalar kinematical

variables. In[12] it was shown that the general VCS matrix  In this section we will define the Green’s functions and
element—virtual photon to virtual photon—requires 18 in-the kinematical variables relevant for the discussion of VCS
variant amplitudes depending on four scalar variables. I®ff the proton. We will consider the constraints imposed by
[13] the reactionyp—p+e*e” was investigated. Sizable the fundamental requirements of gauge invariance, Lorentz
effects on the dilepton spectrum from the timelike electro-invariance, and crossing symmetry. We do this in the frame-
magnetic form factors of the proton were found. Very re-work of a manifestly covariant description, incorporating
cently the low-energy behavior of the VCS matrix elementgauge invariance in its strong version, namely, in the form of
was investigatefi14]. Using Low’s approach9] the leading the Ward-Takahashi identiti¢46,17. The approach is simi-
terms in the outgoing photon momentum were derived. Ifar to that of[3] using, however, a somewhat more modern
was shown that the virtual Compton scattering amplitude atormulation.

low energies involves 10 “generalized polarizabilities” that ~ The electromagnetic three-point and four-point Green’s
depend on the absolute value of the three-momentum of thiinctions are defined as

virtual photon. These new polarizabilities were estimated in

a nonrelativistic_ guark model. 1i15] the VCS amplit.ude Gﬁjﬁ(x,y,z)=<O|T[\Ifa(x)@(y)\]“(z)]|0>, (2.2

was calculated in the framework of a phenomenological La-

grangian including baryon resonances in thandu chan- _

nels as well asr® and o exchanges in thé channel. A Ghp(W,x,y,2)=(0|T[W (W) W4(x)I*(y)I"(2)]|0),
prediction for the|g| dependence of the electromagnetic po- (
larizabilities @ and 8 was made.

The purpose of this work is to identify, in an analogouswhereJ* is the electromagnetic current operator in units of
form to the real CS case, those terms of VCS which arehe elementary charge>0, e’/47=1/137, and wheréel
determined on the basis of only gauge invariance, Lorentgenotes a renormalized interpolating field of the proton;
invariance, crossing symmetry, and the discrete symmetrieglenotes the covariant time-ordered produ. Electromag-

In the following, we will refer to such terms not fixed by this netic current conservationg, J*=0, and the equal-time

LET for simplicity as “model dependent.” By introducing commutation relation of the charge density operator with the
additional constraints, such as chiral symmetry, a statememjroton field,

about these terms also becomes possible. This is, however,
beyond the scope of the present work. In our study of low-
energy virtual Compton scattering, below the onset of pion
production, we will mainly work on the operator level. This
allows us to work without Specifying a particu|ar Lorentz are the basic ingredients for deriving Ward-Takahashi iden-
frame or a gauge. We combine the method of Gell-Mann andities [16,17.

Goldbergel{2] with an effective Lagrangian approach. Class Using translation invariance, the momentum-space
A is obtained in the framework of a general effective La-Green’s functions corresponding to E¢2.1) and (2.2) are
grangian describing the interaction of a single nucleon withdefined through a Fourier transformation,

the electromagnetic fielf4]. In the specific representation

we choose, this turns out to be a simple covariant and gauge (2m)*5*(ps—p; — )G 4(pys.pi)

invariant “modified Born term” expression, involving on-
shell Dirac and Pauli nucleon form factofs andF,. The
Ward-Takahashi identities then allow us to determine the

2.2)

[3%(x), ¥ (y)]8(x°—y9) = - *(x—y)¥(y), (2.3

a

:f dixdlydizePrx-Piy-aAGE (x,y,2), (2.4
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(2m)*8*(ps+q’ —pi—q)Ghp(P.a,q") r2"(P,a.q")=T(P,—q',—q). (211
— | A Aty Ay (b [ (PrW—pi-X—q-y+q’ - 2) (v Since also the totdl*” is crossing symmetric, this must also
J d'wd'xd’yd’ze Clp(W:xy,2), be true for the contribution of cla®® separatel\f2]. Using

(2.5 the Ward-Takahashi identity, ER.8), one obtains the fol-
lowing constraint for clas®\ as imposed by gauge invari-
wherep; andps refer to the four-momenta of the initial and ance:
final proton lines, respectivelf=p;+ p¢, and wherey and
—q’ denote the momentum transferred by the curreits a2 (P,a,q")=i(T'"(ps,ps+a") —T"(pi—q’,pi)

andJ”, respectively. We note th&’, ; depends on two in- -1 AT — A
dependent four-momenta, e.g;,and éf. In particular, it is TS PSP AT (P~ g’ p)
not assumed that these momenta obey the mass-shell condi- —T(ps,ps+a)S(pi+a)S 1(pi))
tion p/=pf=MZ2. Similarly, G4 depends on three four- , ,

momenta which are completely independent as long as one =fa(P.q,9"). (212

considers the general off-mass-shell case. This will prove t
be an important ingredient below when analyzing the gener
structure of the VCS tensor. PR N T M _TE( )

Finally, the truncated three-point and four-point Green’s a,I'a"(P.q,a") = =i(I"*(ps,pr=a) = I"*(pi+a.pi)

imilarly, contraction of"4” with ., results in

funcftion_s relevant for our discussion of VCS are obtained by +S Y po)S(pi+ ) TH(pi+9,pi)
multiplying the external proton lines by the inverse of the
corresponding ful(renormalizedl propagators, —I*(ps.ps—a)S(pi—a')S H(pi))
L#(ps ) =[iS(p)]™*GH(py,PLIS(PN] ™Y (2.6) =—fa(P.—0".~0), (213
r*(P,q,9")=[iS(pp) ]~ *G**(P,q,9")[iS(p;) ]~ %, which is, of course, the same constraint which one obtains
(2.7 from Eg. (2.12 using the crossing-symmetry property of
|
where, for convenience, from now on we omit spinor indi- 8
ces. Using the definitions above, it is straightforward to ob- q.'4"(P,q,q9")=—(—q )T *(P,—q’,—q)
tain the Ward-Takahashi identities
» » =—fA(P,—q’,—0). .14
a,.I“(ps.p) =S Xp)— S (p)), (2.9 N _
Combining EQgs.(2.9 and (2.12 generates the following
qMFW(P,q,q’):i(Sfl(pf)S(pf—q)F”(pf—q,pi) constraint for the contribution of clag
—T(ps . pi+a)S(pi+a)S™(p))). q,TE"=q,(T*~T4")
(2.9

=i[I'""(pi—q’,p)) —I'"(ps,ps+0d")], (2.19

relating it to the one-photon vert¢8]. Once again, the sec-
ond gauge-invariance condition, obtained by contracting

A . o X
u-channel pole terms: clas® contains all the other contri- with q,,, is automatically satisfied due to crossing symmetry.

butions. We emphasize that this procedure does not restrict € 4X4 matrixI'g” of classB is a function of the three

the generality of the approach. The separation into the twd'dependent four-moment, g, andq’. It is important to
classes is such that all terms which are irregularcfér0 realize that the 12 components of these momenta are inde-

(or q’f‘.—>0).ar.e pontaﬁned in Chs& whereas clas8 is pendelvt var:cablesbqtnly for tlhe comzp)lete(jofzf-s_lt\ﬁll ca_Tleé)Le., if
regular in this limit. Strictly speaking, one also assumes thapn€ allows for arbitrary values gfi and p; This will be

there are no massless particles in the theory which coulifPortant when making use of the constraints imposed by
make a low-energy expansion in terms of kinematical vari-gauge invariance. Using Lorentz invariance, gauge invari-
ables impossibld1]: furthermore, the contribution due to ance, crossing symmetry, parity and time-reversal invari-

t-channel exchanges, such as% has not been considered. ance, it was shown ifi2] that the general*” for VCS off
The contribution from clas#, expressed in terms of the & free nucleon with both photons virtual consists of 18 inde-

full renormalized propagator and the irreducible electromagpe“de”t operator structures. The functions associated with

Following Gell-Mann and Goldbergé®], we divide the
contributions to I'*” into two classes, A and B,
r#*=r4"+TI'g”, where classA consists of thes- and

netic vertices. reads each operator depend on four Lorentz scalars, e.g.,
' 9%,9'%,v=P-q=P-q’, and t=(p;—ps)2. When allowing
CR*=T"(ps,ps+9")iS(pi+ ) TH(pi+9,p;) the external nucleon lines to be off their mass shell, one will
have an even more complicated structt@].
+T#(ps,pr—DiS(pi—a")I'(pi—a’,pi)- However, in our derivation of the low-energy behavior of

(2.10 the electromagnetic four-point Green'’s function we will not
require the full structure as discussed[i2]. At low ener-
Note thatT'4” is symmetric under crossingj«—q’ and gies we expand'g” in terms of the four-momentg* and
nev, e, q'#,
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T4"=a*"(P)+b*"*(P)q,+c " (P)q,+- - -, (2.1 pendent; this has of course no effect on the final on-shell
result, which is representation independent. This was explic-
where the coefficients are>d4 matrices and can be ex- it|y shown il’][22] for the case of real Compton scattering off
pressed in terms of the 16 independent Dirac matricehe pion. On the other hand, for any given appropriate inter-
1,v5,v*,v*vs,0*". An expansion of the type of E42.16 polating field satisfying the equal-time commutation relation
is expected to work below the lowest relevant particle-of Eq. (2.3) the Ward-Takahashi identities, Eq2.8) and
production threshold, in this case the pion-production thresh(2.9), hold, providing important consistency relations be-
old; we refer the reader to, e.g., R@tO]’ where a similar tween the different Green’s functions. In the following we
discussion for the case of pion photoproduction can bevill make use of these relations for arbitraPy g, andq’,
found. which, in particular, includes arbitragy? andp? Only at the
So far we have considered general features of the operand, the observable on-shell case will be considered.
tors entering into the description of VCS. It is clearly one of

the advantages of using a covariant description of the type of A. Derivation of the low-energy theorem
Eq. (2.16 that it neither uses a particular Lorentz system nor , , , . .
a specific gauge. When referring to powersqobr ', we We will derive this theorem by using a convenient repre-

mean the ones coming from the Dirac structures and theff€ntation, the “canonical form,” of the most general and
associated functions. This is different when one works on thg2uge invariant effective Lagrangian. In the framework of
level of nucleon matrix elements or the invariant amplitude &fféctive Lagrangians, a canonical form is defined as a rep-
where also kinematical variables from the spinors or normalf€sentation with the minimal number of independent struc-
ization factors enter into the power counting. tures (see, e.g_.[23]). For the classA terms, we need the
We conclude this section by noting that the above frame€l€ctromagnetic vertex and the propagator of the nucleon.
work can easily be applied to VCS off a spin-0 particle, suchB€low the pion-production threshold, the Lagrangian for a
as the pion. In that case“”, of course, has no complicated single proton, interacting with an electromagnetic field, can
spinor structure. The building blocks for clagsare simply ~ P€ brought into the canonical forfe]
the corresponding irreducible, renormalized electromagnetic %
vertex for a spinless particle and the full, renormalized EyNN:\IT(iD_M)\P_GE [(_D)n—lyFw]FlanyN,
propagatorA (p) [21]. n=1

[

Ill. LOW-ENERGY BEHAVIOR OF VCS F .+ 2 [(—=O)"F,,]F2, Vohry,
n=1

aM
In a two-step reaction on a single nucleon, such as
v*N—v*N, the intermediate nucleon lines in tlse and 3.9
u-channel pole diagrams of classare off mass shell, while )
the external nucleons are on shell. The early, manifestly covhereD, ¥ =(d,+ieA,)¥, F,,=d,A,—d,A,. The elec-
variant derivations of the low-energy theorem for Comptontroma_gnetlc structure of the proton is accounted for_ through
scattering 2,3] took into account that the associated half-off- the Dirac and Pauli form factors;; and F,, respectively,
shell electromagnetic vertex of the nucleon has a differenfVhich are expanded according to
and more complicated structure than the free vertex. How- .
ever, it was shown that the model- and representation-
dependent properties of an off-shell nucleon do not enter in Fa(a)= 1+n§1 (9°)"F1n,
the leading terms of the full Compton scattering amplitude
when the irreducible two-photon amplitude of cl&ss in- o
cluded con5|stgntly. This was explicitly shown by gxpandlng Fo(q2) =K+ 2 (?)"Fy,, k=1.79. (3.2
Eq. (2.10 to first order ing* and by constructing the n=1
leading-order term of'g” with the help of Eq.(2.15 and
crossing symmetry or, equivalently, the second gauge- To this representation of the Lagrangian belongs, of
invariance constraint. The final result for the amplitude wascourse, a particular canonical Lagrangian of ordérthat
given in the laboratory frame and in Coulomb gauge. generates the clagsterms. However, as will be seen below,
In order to obtain the LET for VCS, we will proceed on we do not need to know it in detail for this derivation.
the operator level and combine the method[Bf3] with  Clearly, Eq.(3.1) is invariant under the gauge transformation
ideas of an effective Lagrangian approach to Compton scat¥ —exd —iea(x)]¥, andA ,—A ,+d,a. In order to arrive
tering [4]. Let us first recall that the electromagnetic three-at Eq.(3.1), use has implicitly been made of the method of
point and four-point Green’s functions of Eq8.1) and(2.2)  field transformations(see, e.g.,[23-26). It should be
depend on the choice of the interpolating field of the  stressed that all ingredients needed for &ql) are on-shell
proton, i.e., are “representation dependent.” Therefore, theuantities that can be determined model independently from
truncated Green'’s functions in momentum space, Ej§) electron-proton scattering. Any explicit off-shell dependence
and(2.7), are in general not directly related to observablesof the irreducible three-point Green’s function has been
except forp?=p?=M?2. Consequently, the separation into transformed away and will thus not show up in the class
classA and classB is necessarily representation dependentcontribution. Such transformations, however, generate con-
since the total Green’s function, E(.6), as well as the comittant irreducible clas® terms for the amplitude that
individual building blocks of clas#\ are representation de- must be treated consistentlgee[4] for details.
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Using standard Feynman rules, the irreducible vertex asg’“. The form of these coefficients will be constrained by
sociated with the effective Lagrangian of E&.1) is found  Lorentz invariance, gauge invariance, crossing symmetry,
to be and the discrete symmetrie§, P, and T. Contracting this
ansatz withg,,, the condition for the clasB operator, Eq.

1-Fy(q?) 3.5), becomes
FZﬁ(pf,pi)=F§ﬁ(pf—pi)=y"Fl(qu?q“d 39
} q.'g"=a*"q,+b*""q,q,+ =0, 3.7
o,
iom Fad). a=pipi @3 Multiple partial differentiation of Eq(3.7) with respect to

g, results in the following conditions for the coefficients,
Since it is an important ingredient in our derivation of the

LET, we emphasize that the vertex of E.3 satisfies the
Ward-Takahashi identity of Eq(2.8); the corresponding ak’=0, bHPYLDPRY=0, X cHI=0,. .. .

propagator in the representation that yields E11) is the &p,?r{f)

Feynman propagator of a point proton. As a consequence of (3.9
gauge invariance, Eq3.1) automatically generates a termin o ]

the vertex proportional to/“. Since current conservation is expected to hold for arbitrary

We note that the effective Lagrangian approach provideg, the technique of partial differentiation to obtain conditions
a natural explanation for the vertex of E@®.3 which has for the coefficients can easily be extended to obtain con-
previous|y been used by several authors as a Simp|e meansﬁgaints for higher-order coefficients. The Simp|e constraints
restore gauge invariance in the form of the Ward-TakahasHf Ed. (3.8) are based on the fact th&t*, q*, andq’“ are
identity (see, for exampld,27]). However, it is not an inde- independent variables; an implicit dependence would make
pendent building block for any amplitude, but must be usednatters more complicated.
together with the corresponding irreducible cl&sterms for Froma*"=0 we can already conclude that the operator
the reaction in question. of classB contains no contributions which involve powers of
In principle, we could now proceed to construct the mostd’ only, without powers ofy. Taking Eq.(3.8) into account,
general effective Lagrangian relevant to generate the corréve now expand with respect ',
sponding clas®8 terms for VCS. This would allow us, to-
gether with a calculation of the pole terms involving the I'8"(P,q,q")=B*""q,+B**"“q,q,+ - - +C**""q,q,
vertex of Eq.(3.3), to determine the model-dependent terms wpova ,
of T'#¥ at low energies. However, at this point it is more +C Alodat -~ (3.9

straightforward to apply the results of the last section. Wehc we apply crossing symmetry to E48.9) we find, as ex
. unv . y -
obtain forI's™ in the framework of Eqs(3.1) and (3.3 pected, that indeed all terms vanish that involve powers of

4% =T 2~ )iSe(pi+ )T () gepc;r;:yéér':'thglzs\ge find for the leading term of the model-

I iSe(pi—q ) le(—a'). (3.9

Making use of Eq(2.15) to obtain the gauge-invariance con-
straint for clas$3 in our representation, we see that it has the BHPVA= — BPH VA= BVELL (3.10
simple fornt

I'g"(P,q,9")=B**"*(P)q,q,+0(qqq’,qq'q’),

, where the conditions fdB#*'”* result from gauge invariance
q.I'g"=0. (3.5 and crossing symmetry, respectively. To be specific, after
imposing the constraints of Eq3.10 and of the discrete

This is due to the fact that the vertex of £§.3) depends on  symmetries one obtains three possible structureBf6r’®
the momentum transfer, only. Note that E8.9) is still an o theoperator level

operator equation, valid for arbitrai®, q, andq’.
ClassA is defined to contain for any representation the pgrr.ve(p)=i(grrgre—grrg”®)f,(P?)+i(g""PPP*

pole terms ofl'#” which are singular in the limig*—0; we

will come back to this point in the next section. We thus can +gP PHPY — g PHPY— gt PPPY) f,(P?)

make for clas®8 the following ansatz for thg dependence:

+ et ysfa(P?),  €grar= 1. (3.1
nv ' — M,V MP,V MPO,V
I'g"(P,q,q")=a*"+b*""q,+c*""q,q,+ 3.6 In summary, we have shown that on thgerator levethe
terms of order O(q,%), O(q’',Y), O(1), O(q,), and
The coefficientaa”, ... are 4x4 matrices which have to O(q;,) are contained if'4"¢, Eq.(3.4. They are therefore

be constructed from the 16 Dirac matrices, the metric tensofetermined model independently through on-shell quantities;
g*#, the completely antisymmetric Levi-Civita pseudotensormodel-dependent terms first appear in the o, qp); all
€*$7°and the remaining independent variable§ and operators which contain either only powers @for only
powers ofg’ can entirely be obtained from thi&,". In the
next section we will discuss the implications of these find-
Yn the following we omit the subscript “eff.” ings for the on-shell VCS matrix element.
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B. Application part of I'*”. For the final photon the Lorentz condition

We now want to apply the above result to the observabld € =0 is automatically satisfied, and we are free to
case where the nucleons are on mass shell, i.e., we considgto0se, in addition, the Coulomb gauge=(0,¢') which
the matrix element. For that purpose we first define the maimplies q'- €’ =0. We write the invariant amplitude in the
trix element ofl'*” between positive-energy spinors as convention of [28] as M=- ieze#M #. where

, o ) eM=eTyMu/q2 is the polarization vector of the virtual pho-
Ve (P.a.a")=u(ps,s)T*"(P,q,q")u(p; ). ton. With a suitable choice for the reference frame,
(312 g“=(q,,0,0/q|), the Lorentz conditiom- =0 and current
conservationg,M#“=0, may be used to reexpress the in-

At this point we have to keep in mind that for the Va”ablesvariant amplitide af2d]

we use,P, g, andq’, the on-shell conditiop?=p?=M? is
equivalent toP-(q—q’)=0, and P2+ (q—q’)2=4M?2. In Y Y
other words, the four-momenta chosen for the description of M= lez( er-M1+ ?EZM z)- (3.13
the off-shell Green’s function will no longer be independent 0
for the on-shell invariant amplitude. In particular, the distinc- Note that asj,— 0, bothe, and M, tend to zero such that
tion between powers af only or, respectively, off’ onlyin M in Eq. (3.13 remains finite. Making use that we now
I'*” is not valid anymore for the matrix element since know the general structure of the first undetermined operator,
qg-P=q’-P. Eqg. (3.1), we can now consider the matrix element up to
Let us consider as an application the case where the initisdecond order irg or g’. This will enable us to explicitly
photon is virtual and spacelike and the final photon is realshow how far the amplitude is determined and where the first
v*(q,e)+p(p;,s)—v(qQ',€')+p(ps,st). The following  model-dependent terms enter. After a reduction from Dirac
discussion does not include the Bethe-Heitler terms of th&pinors to Pauli spinors the transverse and longitudinal parts
physical procesp(e,e’p)y, where the real photon is radi- of Eqg. (3.13 may be expressed in terms of eight and four
ated by the initial or final electron, since these terms are nandependent structures, respectivpiyl4,3Q:

er-Mr=€* €A +io-(e* Xer) Ayt (G’ X e™*) - (qX er)Ag+io- (' X e *)X(qX er)As+iG- €' * o (§X e7)As
+iq’ - €1 (q' X €' *)Ag+iq- € * o (§' X er)A;+iq’ - era- (GX € *)Ag, (3.14

M, = €,6'* - GQAg+i€,e'* Qo (G’ X Q) A +ie,o (X e *)Ap+ie,o (G X e *)Ap. (3.15

The results for the function; in the c.m. system expanded ing, as well as the electric and magnetic polarizabilities
up to0(2),i.e., I&’IZ, Iﬁ’llél, and|ﬁ|2, are shown in Tables Which als_o_enter in real _Compton scattering. The Iatt_er are
I and II. The derivation of the corresponding expressions i¢he coefficients of the first model-dependent terms in the
outlined in the Appendix. expansion of the scattering matrix eIemgnt. .'I_'hen‘ specific
. >, form, and thus the definitions of the polarizabilities, depend
In the amplitudes\s andAg, terms of order 14'| appear. o, the particular representation one chooses for the effective
We have not further expanded them|q) and kept, e.g., the | agrangian; thé(2) results in the tables are specific for the
on-shell form factorssy, andGg . This was done mainly to “canonical form,” which happens to be the standard choice
stress that according to Low's theord®] these divergent for real Compton scattering. Note that to the order consid-
terms are already entirely fixed. They are due to soft radiaeredA;= — Ag=A;y. The amplitude#\; andAy contain the
tion off external lines, with the intermediate line approachingelectric polarizabilitya of the proton whereag; involves
the mass shell in the pole terms. They can be obtained fromhe magnetic polarizabilityd [4]. In terms of the functions
e.g., the Born terms that contain the same on-shell informat;(P?) of Eq. (3.11) they are defined as
tion (see however the caveats in Sec.).IM\n order to
uniquely identify these singular contributions we have ex- g=e?[f,(4M2)+4M?3f,(4M?)], B=—e?f,(4M?).

panded all relevant expressions in termsafand|q’|. This (3.16
is the reason why the argument of the form factors is
Qz:q2|ld’|=0: —2M(E;— M), whereE; = VM 2+§2_ The functionf;(4M?) only contributes at orde®(3), since

Not only the irregular contribution, but all terms in the ¥s connects upper and lower component of positive-energy
amplitudes up to terms linear in the photon momenta ar&Pinors which effectively leads to an additional power of
uniquely determined through well-known properties of the|q| or |q’| in the matrix element.
free nucleon: its mass, charge, and magnetic moment. These In Table Ill we also show the results for the transverse
are the terms that make up the LET for VCS. UpQ¢2), amplitudes in the c.m. frame for real Compton scattering.
the coefficients in addition also involve the electric meanSinceAs= —Ag andA;= — Ag the result effectively involves
square radius, which we know from electron-proton scattersix independent amplitudes as required by time reversal in-



910 S. SCHERER, A. YU. KORCHIN, AND J. H. KOCH 54

TABLE |. Transverse functiong,; of Eq. (3.14) in the c.m. frame. The functions are expanded in terms
of |q’| and|q| of the final real and initial virtual photon, respectively,= \(E; + M)/2M is the normaliza-
tion factor of the initial spinor, whereE;=\VM?+|q|%. Gg(q?)=F(q?) +(q%4M?)F,(q?) and
Gu(g®)=F1(g®>)+F,(g?) are the electric and magnetic Sachs form factors, respectively.
r2=6G£(0)=(0.74+0.02) fn? is the electric mean square radiigl] and x=1.79 the anomalous mag-
netic moment of the protorQ* is defined agy*||g/|-o=(M—E; .q), Q?=—2M(E;—M), andz=q’-q. a_
and B are the electric and magnetic Compton polarizabilities of the proton, respectively.

A 1+ z . [1 . 2k a S, . rz 22+(1+K)K .
' vt el (gt ev - awe @) (e ev vt Tawe [
1+2k . P zx . . (1+k)? .
T A e A2 N _ = 2
Az oz |91 ld [P+ oppldllel = —ldl
1. (1 B\. . (3-2«dz.
A _ I [ P] et P
A (1+x)? . (2+K)k . +K)’z =5

NGw(@)  [a? (A+w)x -

A5 - > = 3 | |2
(E+Zd)(E+M) [q'|  4M
A I+k - (+K)k - ) I+wz - -
6 prvsAiTvia S iV CHIC
A 1+3k -
1+3k =
Ag e la’lldl

variance[4]. When comparing with other expressions in thetimelike momentum transfers is needed. However, here one
literature[1,2,4,3@, one has to keep in mind that they usu- has to keep in mind that this information is not directly ac-
ally are given in the laboratory frame. This observation accessible for 8<g2<4M?2.

counts, for example, for the difference of the LET foy and

Az of real Compton scattering in the laboratory and the c.m.

frame. Note also that the |/ | singularity disappears in the IV. THE BORN TERMS
real Compton scattering limit, since=|q|=|q’| in this From the above discussion in a particular representation
case. one might be tempted to conclude that the leading terms for

In Conclusion, the |OW'energy behavior of the VCS matriXVCS’ on the Operator level or for the amp”tude' are in gen-
element fore”+p—e +p+y, expanded up to order eral simply given by “Born terms.” However, some caveats
O(2) in|qg| and|q’|, contains, in addition to the structure are in order. First, one has to keep in mind that the low-
coefficients that enter into real Compton scattering, also thenergy behavior was obtained from considerations involving
electric mean square radius and the electric and magnettbe most general ansatz for the truncated four-point Green’s
Sachs form factors in the spacelike region which all can bdunction. All terms one can think of are included into class
obtained from electron scattering off the proton. For the reA and classB. In, e.g., the derivation df3] of the LET for
actiony+p—p-+e*e” [13], the analogous information for Compton scattering, where no special representation is cho-

TABLE Il. Longitudinal functionsA; of Eq. (3.15 in the c.m. frame. See caption of Table I.

NiGE(Qz) |a|2 1+ z |d| 1 + ré K Ej|dr|2+
> S M 2T e M AMS &2
Ao (E+Zd)E+M[g| M M 1BMT 6M a7 &

2
BT igp

1+3k -

A ——_19'lld
10 v |9 ld
A L+2e ., | K 2, Atz o o 1426 -,
1 WM | WJQ | PIVE |q'[|al PIVE la
A A+K)z, ., (A+)kz -, (A+&)(22°-1) ., - (1+K)zZ -,
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TABLE lll. Transverse functiong\; in the c.m. frame for both half-off-shell situation encountered in ttse and u-channel

photons realg?=q'?=0, |q|=|q’|= w. pole terms of Compton scattering. This difference is, of
- p . g
course, accompanied by different cldserms such that the
A 1 z Z (2+uk al total result is the same.
1 “vTveetl Tt T @)@ To explain the above points in more detail, we will first
1h2c  h2el-z+0) recons!der the most general expression for dﬁasld, with-
Az TV v w out going to a special representation, identify those terms
_ which contain the irregular contribution fog“*—0 or
As _iw 1+(3—«(2+ K))Z+ E)wz g'“#—0. We find that these contributions can be expressed in
M? FIVE & terms of on-shell quantities, in our case the Dirac and Pauli
A (A+k)?2  z+k(2+K)(z—1) ) form factorsF; andF,. We then show that the use of on-
4 TTomZ @ a3 w shell equivalent electromagnetic vertices gives rise to the
N Itk (@zutn) Isar‘rt1e results for the VCdS rtr:attrlx ?Iement ?\S far agﬁ‘egu- "
5 — Ot @ ar terms are concerned, but not every choice will result in
M “Born terms” which are gauge invariant.
gaug
1+« (2z+k)(1+ k)
As TV v et
M aM A. Irregular contribution to the VCS matrix element
1+3k . . S .
A, 7W‘”2 When calcula_tlngV’s‘ig.f : the irregular contribution origi-
A 143k nates fr9m the singularities of the propage_ltS(piJrq) and
8 VIVERS S(p;—q’) in thes andu channels, respectively. To be spe-

cific, below pion-production threshold the renormalized, full
propagator can be written as

sen, it is clearly shown thdioth classA and classB terms

are needed. Implicit in all derivations is of course the as- S(p+a)=Se(p+Qq)+regular terms,
sumption that a description in terms of observable asymp-
totic hadronic degrees of freedom is sufficient and complete (p+g)°<(M+m,)?, (4.7

at low energies. Even though subnucleonic degrees of free-
dom, quarks and gluons, are ultimately the origin of thewhereSg(p) denotes the free propagator of a nucleon with
structure of the nucleon, it was shos2,33 that an effec- massM. By “regular terms” we mean terms which have a
tive field-theory approacti34—37 in terms of hadrons is well-defined, nonsingular limit fog#—0. Thus, as long as
meaningful at low energies, thus allowing a classificationwe are only interested in the irregular terms, we can simply
into classA and classB. replace the full, renormalized propagator by the free Feyn-
Second, there is an ambiguity concerning what exactly ignan propagatorSg .
meant by “Born terms,” once phenomenological form fac- The most general form of the irreducible, electromagnetic
tors are introduced and the result is not obtained from avertex of the nucleon can be expressed in terms of 12 opera-
microscopic Lagrangian. We will illustrate this ambiguity by tors and associated form functiof88,39. These functions
considering different representations of the photon-nucleodepend on three scalar variables, e.g., the squared momen-
vertex. All representations contain the same information contum transfer and the invariant masses of the initial and final
cerning the electromagnetic structure of the on-shell nucleomucleon lines. A convenient parametrizationlof(p;,p;) is
as obtained in electron-nucleon scattering, but differ in thegiven by

a H UMVqV « qM @ a a
F’L(pf,pi):aﬁz+ ~ Aa(py) YEP+i oM Fzﬁ"‘VFSB Ag(pi), F P=F(q%pf.pd), 4.2

whereq=p;—p;, andA ..(p)=(M = p)/2M. We have chosen a form which differs slightly from the conventiofB6f in the
definition of the projection operators and the normalization ofRgdorm functions. We only need the following on-shell
properties of the form functions:

Fi (@2 M2M?)=F (9%, F; (a>M*M?)=Fy(q®), F; (a*M*M?)=F;(qg?)=0, 43
whereF, andF, are the standard Dirac and Pauli form factors &gdranishes because of time-reversal invariance. One can

also show thaF;(g?) vanishes due to current conservation.
We now systematically isolate the irregular part of, e.g.,stohannel pole diagrarh,

VA =u(p) ¥ (pr.ps+a")iS(pi+ ) TH(pi+a,p)u(p) ~u(po)T"(ps,pe+a")iSe(pi+ )T “(pi+a,p)u(p;),

2In the following we omit the indices; ands; .
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where we made use of E(.1), and where the symbet denotes equality up to regular terms. We now insert(B®) for
I'*(pi+a,p;) and useA_(p;j)u(p;) =0 andA . (p;)u(p;) =u(p;) to obtain
VA= u(p)T*(ps,ps+d")iSe(pi+ {A L (pi+QLy*Fq "(9%5,M?)+- - T+ A _(pi+ Q[ y*F1 (0%5,M?)+- - Thu(py),

wheres=(p;+q)2. SinceSc(p;+q)A _(p;+q) results in a regular term, we have

v e v ’ p+q+ ++
VAs=iu(po)T"(ps,ps+q )WA (pi+ D[ ¥Y*F1 T(0%,5,M?)+ - Ju(p)).

We now expand the form functions arousg= M2 and note that in the higher-order terms the powerssef12) cancel the
denominators— M?, of the Feynman propagator and thus give rise to regular terms,

_ . _O-:U«Pq
V=PI (pr.pr+a")iSE(Pi+ @) A+ (Pi+ )| ¥*Fa(q?) +i — = Fa(a?) |u(py),

where we made use of Eq4.3). Using A (pi+q)=1—A_(p;+qg) and then repeating the same procedure for
I'"(ps,ps+9q’) we finally obtain

Vae=u(p,sOTE ¢, (—a)iSe(pi+ATE e (DU(p;,S), (4.9
where we introduced the abbreviation
,uv
T, (@)= Y*F1(q?) +i — Fo( ). (4.5

The procedure for tha-channel partV4'; is completely analogous and we obtain for the surs-aindu-channel contribu-
tions

VA"=U(p)[TE ¢ (—a)iSe(Pi+ DTE e ()+TE £ (DiSe(pi—a)TE ¢ (—a)u(p)=Vy/, (4.6

which only involves on-shell quantities, the Dirac and Pauli form factors and the nucleon mass. Explicit calculation, including
the use of the Dirac equation, shows tNgt of Eq. (4.6) is, in fact, identical with evaluating Eq3.4) between on-shell
spinors. With the help of either E¢2.12 or by straightforward calculation it can easily be shown that @) is gauge
invariant. This is a special feature when working with these particular vertex operators and was essential for the derivation in
[14]. It is quite unexpected, since the electromagnetic vertex(£§), and the nucleon propagator in E¢.6) do not satisfy

the Ward-Takahashi identitiexcept at the real photon point?=0):

AulE, £, (Pr P = (Br— B)F1(a%) # S¢ ()~ Se ' (py). @.7

B. Different representations of the on-shell vertex

We now turn to “Born-term” calculations involving other representations of the nucleon current operator, i.e., other ways
to introduce the model-independent information about the electromagnetic structure of the free nucleon into the calculation of
the lowest-order terms. Two commonly used alternative ways to parametrize the nucleon current opefd€r are

2\ -1
q p# YP4— 4Py
FéE,GM(pf:pi):(l_W) (WGE(QZ)+ TGM(QZ) : 4.9
P
Fﬁlsz(pf,pi)=y”H1(q2)——Hz(q ), (4.9
whereP=p;+p; and
2
GE:F1+ %Fz, GM:H1:F1+F2, H2:F2. (41@

Given Egs.(4.10), it is straightforward to show the equivalence for the free proton current, the matrix elements ¢8.8qgs.

(4.5), (4.8, and(4.9 between free positive-energy spinors. On the other hand, the current operators {4.85g$4.8), and

(4.9 do not satisfy the Ward-Takahashi identity when used in conjunction with free propagators, not even at the real-photon
point [recall Eq.(4.7)]:

o® |\ “tpi-p
qMFéE,GM(pf,pi>=(1—4M2) 2— Ge(a?)# S (Pr) =S¢ (P, (4.1
T, (Pr 0= (1 — B~ B P72 ) -5, 4.1
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The “Born terms” calculated with these electromagnetic vertices and free-nucleon propagators are

V& =u(pr,sO[Tx(pr.Pe+a")iSE(pi+ ) T&(Pi+a,p) + T4 (pe . pe—Q)iSe(pi—a )T x(Pi—a’,p) Ju(p;.s), (4.13

whereX denotes either the vertex of E@.8) in terms ofGg,Gy, or the vertex of Eq(4.9) involving H,,H,, respectively.
These “Born terms” are by construction crossing symmetric but in both cases not gauge invariant,

v . q2 -1 J— » Y , q
qMV‘éE,GM=I(1—W) GE(qZ)U(pfan)(FGE,GM(pf1pi+q)_FGE,GM(pf_qﬂpi)+FGE,GM(pf’pi+q)m
4
+ oL Ge .6y, (Pr P [U(piS)), (4.14
9.V k,=1H1(a%) =Ha(a) Tups SOITH n,(Pr.Pi+a) =T 4, (Pr—a.p) Ju(piS)
T y a 4
—iH2(a)u(pr.so)| Ty w, (PPt A) 537+ 53 Ty m, (P Pe) UL S)). (4.15

With the help of Eqs(4.8) and(4.9) it is easy to see thatin F; *(q%2,M2,M?) and F; "(q%,M?,M?). Any information
each case the nonvanishing divergence is of ogd@&he fact  beyond this will give rise to regular terms. Thus the above
that Egs.(4.14) and (4.195 do not contain terms of the type statement is true.

a-q/b-q suggests that in general the different “Born  To illustrate the above, we bring for example the current
terms,” based on equivalent parametrizations of the on-shethperators of Eqs(4.5 and (4.9, involving F; and F, or
currents, will differ by regular terms, only. It is of course H, andH,, respectively, into the general form of Eg.2).
conceivable that the amplitude could differ by irregularBy using 1=A , (p)+ A _(p), the result for the commonly
terms, which are separately gauge invariant. Thus the abougsed form of Eq(4.5) is given by

argument is not stringent and can only serve as a motivation

for the following claim which is essentially equivalent to Fi#(q%pf.p7)=F1(0?),

Low’'s theorem applied to the particular case of VG8iy

“ " ion involvi i F5P(a%.p7.p7)=Fa(0?)

Born-term” calculation involving electromagnetic current 2" (4%, P, P 2(0%),

operato_rs which correctly reprod_ucg the on—shell'electro- FeB(q2.p2.p5)=0, a.f=+, —
magnetic current of the nucleon will yield the same irregular 37 (4% Py P ' ' v 41
contribution to the VCS matrix elemeiithe key to the proof (4.16

of this statement is the fact that any current operator whicr}:()r the vertex given in Eq4.9), we use{y*, "} =2g*" and
transforms as a Lorentz four-vector can be brought into th?nomentum cogservation at tﬁe vertexvgo,r):awriteg

form of Eq. (4.2). On-shell equivalence then amounts to the
constraint that all operators have the same on-shell limit of (Pi+p)* by +y*p . o'q,

the F;** form functions. In general, no statement can be oM 2M oM (4.19
made for either the other form functions or off-shell

kinematics® However, as we have seen above, the irregulaBy inserting appropriate projection operators in the form
contribution of classA, and thus of the total VCS matrix p=M[A,(p)—A_(p)] and as above, the vertex of Eq.
element, only involves the on-shell information contained in(4.9) can be expressed as

mv,
o v

INTR(T .pi)=A+(pf)( Y*[H1(0?) —Ha(q?)]+i 2,\,? H2(9%)

A+(pi)+A(Pf)<7"H1(q2)

v v
K v at a,

42 Hz(qz))A (p)+A (pf)<y“H1(q2)+i Hz(qz))/\-(p-)
M +(Pj + 2M !

at?

+A_<pf>(w[Hl<q2>+H2<q2>]+i th”m(q%)A_(pi). (418

3Further conditions on the form functions can be derived from the Ward-Takahashi identity and discrete symmetry reqliB8i86nts
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Of course, Eq(4.18 contains the same on-shell information much of the prediction is not a true test of a model, but fixed
as Eq.(4.5), since the form factors satisfy E@.10. On the  due to general principles. These model-independent predic-
other hand, the expressions for all the otRéF form func-  tions for virtual Compton scattering were the main topic of
tions differ. This is why the two “Born-term” calculations our discussion.
based on these two vertices differ with respect to regular The interest in virtual Compton scattering has also been
terms. It is straightforward to extend the same considerationdue to another aspect: When studying reactions on a nucleus,
to the vertex involvingGg and Gy, . such as é,e’'p), the nucleon interacting with the electromag-
In conclusion, we have shown that a calculation based onetic probe is necessarily off its mass shell. We have no
only the “Born terms,” built from any of the many possible model-independent information for the behavior of such a
on-shell equivalent vertices and free nucleon propagatorgjucleon and any conclusion about genuine medium modifi-
yields the same results for thigegular terms as the LET. cations must be based on firm theoretical ground how to deal
Thus these “Born terms” will differ among each other with a single nucleon under these kinematical circumstances.
through regular terms. Furthermore, such “Born terms” are,In fact, such a discussion depends very much on what one
in general, not gauge invariant; an exception is the comchooses as an interpolating field for the intermediate, not
monly used form involving the Dirac and Pauli form factors observed nucleon. This clearly makes the “off-shell behav-
F, and F,. “Generalized Born terms” which are made ior” of the nucleon representation dependent and unobserv-
gauge invariant by hand through ad hocprescription also  able. We discussed how certain features of the off-shell elec-
differ by regular terms. tromagnetic vertex of the nucleon can be shifted into
Important starting point for the derivation of the LET are irreducible, reaction-specific terms for the reaction ampli-
the irregular terms. It is thus also possible to split the totatude. Two-step reactions on a free nucleon, likétual)
VCS amplitude into “Born terms” plus “rest,” instead of Compton scattering, allow us to test many aspects of dealing
classA andB amplitudes, to arrive at the same result for thewith an intermediate, off-shell nucleon under simpler cir-
LET, i.e., up to and including terms linear in the photon cumstances, without complications from, e.g., exchange cur-
three-momenta. In general, this result will have contributiongents or final state interactions. Understanding these aspects
from “Born terms” and the “rest” amplitude. If one uses a on the single-nucleon level would seem a prerequisite before
“generalized Born amplitude,” all the terms appearing in theany exotic claims can be made for nuclear reactions.
LET are due to the expansion of the Born amplitude. It is a We have studied the virtual Compton scattering first on
well-known feature of soft-photon theorems that they cannothe operator level. Using the requirement of gauge invari-
make statements about terms which are separately gauge i@Ace, as expressed by the Ward-Takahashi identity, we de-
variant[41—-43. One has to keep this in mind when discuss-rived constraints for the operator that determine terms up to
ing the structure-dependent higher-order terms of VCS, i.eand including linear in the four-momenggandq’. Also, we
one needs to specify which Born or clasgerms have been showed that on the operator level terms involving terms de-
separated. For example, ih4] the “Born terms” involving ~ pending only ong or only ong’ are determined model in-
F, andF, where separated since they provide without anydependently in terms of on-shell properties of the nucleon.
further manipulation a gauge-invariant amplitude. Then the To obtain these results, we used the method of Gell-Mann
residual part with respect to these particular “Born terms”and Goldberger, by splitting the contributions into general
was parametrized in terms of generalized polarizabilities. Apole terms(classA) and the one-particle irreducible two-
natural question to ask is what would have happened had orghoton contributiongclassB). We calculated clasa below
separated a different choice of “generalized Born terms”pion-production threshold in the framework of a specific rep-
and defined generalized polarizabilities in an analogous fastiesentation for the most general effective Lagrangian com-
ion with respect to the corresponding residual amplitude. Obpatible with Lorentz invariance, gauge invariance and dis-
viously one would, in general, have found different numeri-crete symmetries. This approach was introducef#jnas a
cal values for the new generalized polarizabilities in order tanethod for writing the general structure of the Compton
obtain the same total result. scattering amplitude in a way that allows one best to discuss
its low-energy behavior. In this connection, we also showed
the origin for a commonly used form of the electromagetic
V. CONCLUSIONS vertex of the nucleon and stated the consistency conditions

In studying the structure of composite strongly interacting " itS use. _ .

systems the electromagnetic interaction has been the tradi- Aftér discussing the leading terms of*the VCS operator,
tional and precise tool of investigation. In scattering of elec-We considered thematrix elementfor y*p—yp in the
trons from a nucleon, our knowledge is restricted to twoPhoton-nucleon c.m. frame. We found that the VCS ampli-
form factors that we can extract from experiments. Everfude up to and including terms linear in the _|n|t|al and f!nal
though we have not yet been able to fully explain this infor-Photon three-momentum can be expressed in terms of infor-
mation on the basis of QCD, it is important to look for other mat|0n one can obtain from electron-proton scattering. This
observables allowing us to test approximations to the exadf the result analogous to the LET for the real Compton
QCD solution and effective, QCD inspired models. Such ef-Scattering amplitude. As we also showed, the next order—
fective models are expected to work especially at low enerterms involving|q’|?, |g’||g|, and|qg|?>—is also completely
gies. The electron accelerators now make it possible to studgpecified but now requires in addition also the electromag-
virtual Compton scattering, which is clearly more powerful netic polarizabilitiesa and 8 encountered imeal Compton

in probing the nucleon than the scattering of real photons. Iscattering. In other words, new structure-dependent informa-
analyzing Compton scattering it is important to know howtion can only appear at order 3 or higher in the three-
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momenta. Our results concern the expansion in terms okhere I'4(q) is defined in Eq.(3.3). Applying the Dirac
powers of both the initial and final photon momentum. Thisequation,Mg can be written as
allowed us to determine more terms thariid], where only
the leading terms in the final momentum were concerned. On _
the other hand, by expanding in both momenta, the range of MA=u(ps,Sf)
applicability is smaller sinceboth kinematical variables
should be small. E*q'TE(q) TEa)é' ™™g’
We then considered different commonly used methods to X S—M?2 U—M2
include the on-shell information contained in the electromag-
netic form factors in a “Born-term” calculation of the VCS Kk (P €*q'Th(aq) pi-e*Th(a)d’
matrix element. The fact that the “Born terms” calculated ™M S—M?2 - U—M?2 )
with F; andF, are gauge invariant is not trivial, since the
vertex and free propagator do not satisfy the Ward-Takahashi K
identity. We explained why different on-shell equivalent oL Ter(@) + Te(a) €]
forms for the electromagnetic vertex operator lead to the
sameirregular contribution in the VCS matrix element. We wheres=(p;+q’)? andu=(p;—q’)?. Similarly, using Egs.
emphasized the importance of stating with respect to which3 10 and(3.12), M# can be written as
pole terms the structure-dependent terms are defined.
Using only gauge invariance, Lorentz invariance, crossing ~ M&=u(p;,s;)((e'*#q-q’ —q'*€'*-q)f(P?)
symmetry, and the discrete symmetries, we were able to

pf'fr* p__e_r*
Z(W'f‘ W)F’;ﬁ(q)Jr(le K)

u(p;i.si), (A3)

make statements about the low-energy behavior up to +(e"*#P-qP-q'+P*e"*-Pq-q

O(2). Further conclusions can be reached by also taking into Dk P ke k . DD, 2
account the constraints imposed by chiral symmetry. This Pre™-aP-q'—a™e™-PP-q)f,(P9)
would most naturally be done in the framework of chiral —i """ e ¥ 0,0, ysf3(P?)+0(3)u(p;,s),

perturbation theory. In particular, predictions for the higher-

order terms could be obtained. (A4)

whereO(3) denotes terms of order 3 mpor q’.
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The functionsa*(q,q’) and b#(q,q’) are regular with re-
In this appendix we outline the calculation of the trans'spect t0|f3'| and|ﬁ|, and are given by

verse and longitudinal function’; of Egs.(3.14) and(3.15),

respectively. For that purpose we spit* into its contribu- u N KT — o u A e

tions from classe# andB, M#=M%4+M# . If we introduce Aaq)=Kgu(=g"s)le(@u(=a.5). (A7)

M +b*(q,q"). (A6)

>%

APPENDIX

P £ 0 TE(Q)
o K b*(a,q")=u(=a’",sp)| (1+ )| - —— ="
F(—q')=¢ 1+m (A1) 2(Eq,+|q b
F&(q)é'*w) q-€* Tl(qm’
for the vertex involving the final real photon, the contribu- - N M -
tion of classA [see Eq(3.4)] reads 2(Eq+z|q|) 2(Eq+z|q|)
K -
MA=0p1 S (F(—q)Se(pi+a) L) +m[é'*F‘éﬁmHFsﬁ(q)é'ﬂ)u(—q,so,

+Ie(DSe(pi—a)F(—=a")u(pi,si), (A2) (A8)
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TABLE IV. Reduction of the coefficientéij of Egs.(A17)—(A20) to Pauli space. For the definition of the

corresponding Pauli spin operators see Egd.4) and(3.15. For further information see caption of Table I.

ao(Q)/lq’| ayq| a5/q'l|ql ay]qf?
2
z > ZK | - N VA o
A1 0 szl — aviela’llal —Wﬂ(ﬂz
A, 0 0 0 0
A3 0 ol 1l 2 laP
2M?2 aMm3 2M3
A, 0 0 0 0
A NGw(Q) g 0 0 K
5 T E N ETT B — el
(Ei+Zd)(E+M) |o'|
As 0 0 0 0
1 . K -, - Z -
A 0 _ ’ _ 2
7 WZ|Q| mﬂq [al WS|Q|
Ag 0 0 0 0
Ao NiGe(Q?) |d_|2 z . ZK . 2 ., T
(Ei+zla|)(Ei+M) |d’/| m?|q| mﬂq ||q| _WS|q| +W|q|
1 . K - - z -
A 0 _ _ 2
10 vzl avzla’llal PIVELL
Ay 0 0 0 0
A 0 0 0 0
where we introducea’#=(1q’), and where
(- <" (A9 To=7 Tio=— (770l For=g (77
qQ=———=. 00~ 7> 10~ ~ 4y LY Yol 1=, LYY 4l
Eqt2lq| 4M 4M

In order to obtain Eq(A9) we explicity made use of the
Coulomb gauge for the final photon, namely, when using
pi-e'*=0 andp;-€'*=q-€'*.

We will now derive from Eqs(A6)—(A9) the expansion
of M% in powers of|q| and|q’|. According to Eq.(3.13 it
is sufficient to treat the space componentdvf. Since the
structure coefficients appear Q(qq’) and higher i.n the' Since the dependence on the momeimndﬁ’ is also con-
operator, we expand the contributions up to and InCIUOIIngLained in the initial and final nucleon spinors, respectively,

19’12 |9’|lal, and|g|?. When expanding the electromagnetic we expand them to the required order:
vertex we make use of the following relations:

> - K -> = ~ ’
I'=F1(0)y— W[% Yoli  T'11=—Qv¥oF1(0),

N > 5 an , K -
For= (= 3+ 7-88F1(0)+ ol 7,%0], - (ALD)

qu:Qﬂ+|a/|gM0+... U(_d): 1+ﬁ+ |ﬁ|2+ u(0)
' 2M ' 8M2 ’
4=Q+q'|yo+ -+, e
u(—q")=u(0) 1+ﬁ+|q| +..- (A14)
q%=Q2+2Qo|q'[+ - -, (A10) 2M ' 8M2 '

where from now on we suppress the spin indices. Finally, the

where Q*=g*|q/ —o=(M —E; ,ﬁ). Furthermore, fora we ! i
expansion of the energy denominators reads

need the expansion of the form factors aro@rd

F140%)=F14Q%)+2Qo|q'[F1 Q% +---, (AlD) O S (I (s
, . , —=———F -
. . . L Eqg+la| M M7 2M
with the notationF’(x)=dF/dx. Using the definition of
rs of Eq. (3.3, it is straightforward to obtain - -
@) of 56 ’ 11 7 @@l

—= (A15)
Eqtzlgl M M2 2Mm3

Tei(q)=T oo+ T10q"|+Toglal+ - -, (A12)
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TABLE V. Reduction of the coefficiemﬁij of Eqgs.(A23)—(A28) to Pauli space. See captions of Tables

I and IV.
boo b10/q’| el b2dq’[? builq’(|dl bodql?
1 z . 1 2 k. . 1 2 2
A = 0 _ Y P T | e 172 b Pl T R
+K(1+K) .
1+2k . - 2 SN (A+x)?
A 0 g’ 0 o 1q'12 N P _ 2
1 . 1-x . . (1-2k— K%z .
A 0 0 — 0 ' 2
3 Wkﬂ mﬂq [lal Tkﬂ
(1+x)? . 2+, . - (1+x)%z, .
A 0 0 = 0 _ =g 2
2+x)Kk -
A 0 0 0 0 0 - qgl?
S 4M3 |q|
1+k . I+K)k - AI+K)z . .
A 0 — g’ 0 _ 2 _ ’ 0
1 - 1+2« =02 Z R
Az 0 0 ~ ozl 0 — v 9 lal sylal?
1+3k . -
Ag 0 0 0 0 PIVERRAL 0
1 z . 1 r2 K |- K .o 1 Z\.
A _ = 0 _ = " A2 b Pl - = 2
1 . 1+2« . . z .
A 0 0 S 0 2 Ny T g2
1+2k . P A+K)z . . 1+2« .
A 0 — 4 0 — _lq’12 ’ 2
A, 0 (1+Kz . 0 1+ K)kZ -, (1+x)(22°-1) -, - (1+K)z -,
5zl STy sl Y Vi sl (VI [+ BT vi sl
Let us first consideé(q,q’) which we expand according R ;,.qr . . ;,.q
to | Sy Toot Pao) 5377 u(0),
a(9,9") =20 Q) +19'[aset 9’ [*az0+ [a'[lqlas A .
aj0=0, j=1.2,.... (A21)

+10'[Page+19'12lalaz+ a9 ||al?at - - -
(A16) The last equation follows fronK(0)=0. The function
§OO(Q) is completely determined in terms of the electromag-
netic form factorsF; AQ?) [or Gg w(Q?)]. Note that in Eq.
200 Q) =K(q)u(0)F'eg(Q)u(—a), (Al7)  (A17) we keep all powers ing|, since it will be multiplied
with the 1/q’| singularity and there are no other terms which
g-€* (M’

Using the relations of EQ4A10)—(A15) we obtain

- _ can generate such a singularity.
an=——UO0)| 5y In order to determiné(q,q’), we first expand(q,q’) in
an analogous fashion to EGA16)

oot [10]u(0), (A18)

> A

. ge*_ [ 1 . yq. .
1=~ " u(0) 8,\/|2Foo+ M | ST Y

0 y ~ ’ - SR g S 2R
u( b(9,9")=boot+ 19’ [019+ |albos+ 19|02
(A19) e e
N +19'[lalbyy+ g *bot - - - (A22)
- Qe z[yq' s | = y-d
a=— U0 = | Sy T oot o) + ST Using the building blocks of EqgA10)—(A15) we find for

(A20)  the coefficients;; :



918 S. SCHERER, A. YU. KORCHIN, AND J. H. KOCH 54

R 1 __ R N 1 __
boozmu(o)((l‘*'K)[é’*"",roo]"'K{é/*/,roo})U(O)ZWU(O)XU(O). (A23)
b ! —u(0)| (L+x)|[£*n',[ ]—ié'*m'f +i{* T+ = ;.q' X|u(0)= ! u(O) Y+ﬂx u(0)
10— 2M » 4 10 M 00 4 10) 2M 2M ’
(A24)
1 %A T Zz Ik AT K"/* AT ’ % T ’;a
1 L -> ~
= 577 U(0) Z+X—)u(0) (A25)

’)’q

(1+ &) +i{E 0, r20}+ v+ S:Azx}um), (A26)

. 1 _ N 1 N 1
bzosz(O) [é'*W,on]—Mé'*WFm-f— 2é,*ﬁ FOO

. 1 _
bllZNU(O) (1+ K)

- 1 R Z . e s _
[é’*ﬁ’,l’lﬂ—mé’*m’l“oﬁ MFloé’*W)—&e’*-ql“loﬁ”rx{é’*,l“ll}

Yq 7q +7'q 7-q

- 1 Ik Al T Z = 1% At — ErY Kow ol g Z= '
bozzmu(o) (1+ K) [é V] ,Foﬂ‘i‘ MFMé Vﬁ + 2M2 Fooé ﬁ M —F € . q FOl_ MFOO Vﬁ
. v q
{6 P +Z 5+ 22X |u(0). (A28)

The reduction of the above expression to Pauli space is straightforward but very tedious. The results are displayed in Tables
IV and V.

Finally, it is straightforward to obtain the expansionl‘ag:

@ ———l
2 *1a'llal(ze™* —§-€*G") 2 +0(3) |u(0), (A29)

Mg=u(0)| |q'|2€"*

where we have defined tHesa) Compton polarizabilities as
a=eYf,(4M?)+4AM?f,(4M2)], B=—e?f,(4M?). (A30)

Due to the presence of the, matrix, the third functiorf;(4M?) only contributes aO(3) at the level of the matrix element.
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