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We investigate the low-energy behavior of the four-point Green’s functionGmn describing virtual Compton
scattering off the nucleon. Using Lorentz invariance, gauge invariance, and crossing symmetry, we deriv
leading terms of an expansion of the operator in the four-momentaq andq8 of the initial and final photon,
respectively. The model-independent result is expressed in terms of the electromagnetic form factors of the
nucleon, i.e., on-shell information which one obtains from electron-nucleon scattering experiments. Mo
dependent terms appear in the operator atO(qaqb8 ), whereas the ordersO(qaqb) andO(qa8qb8 ) are contained
in the low-energy theorem forGmn, i.e., no new parameters appear. We discuss the leading terms of the ma
element and comment on the use of on-shell equivalent electromagnetic vertices in the calculation of ‘‘B
terms’’ for virtual Compton scattering.@S0556-2813~96!02108-5#

PACS number~s!: 13.40.Gp, 13.60.Fz, 14.20.Dh
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I. INTRODUCTION

Low-energy theorems~LET’s! play an important role in
studies of properties of particles. Based on a few gene
principles, they determine the leading terms of the low
energy amplitude for a given reaction in terms of globa
model-independent properties of the particles. Clearly, t
provides a constraint for models or theories of hadron stru
ture: unless they violate these general principles they m
reproduce the predictions of the low-energy theorem. On
other hand, the low-energy theorems also provide useful c
straints for experiments. Experimental studies designed
investigate particle properties beyond the global quantit
and to distinguish between different models must be carr
out with sufficient accuracy at low energies to be sensitive
the higher-order terms not predicted by the theorems. A
other option is, of course, to go to an energy regime whe
the low-energy theorems do not apply anymore and mod
dependent terms in the theoretical predictions are importa

The best-known low-energy theorem for electromagne
interactions is the theorem for ‘‘Compton scattering’’~CS!
of real photons off a nucleon@1–3#. Based on the require-
ment of gauge invariance, Lorentz invariance, and cross
symmetry, it specifies the terms in the low-energy scatter
amplitude up to and including terms linear in the photo
momentum. The coefficients of this expansion are expres
in terms of global properties of the nucleon: its mass, char
and magnetic moment. In experiments, one can make
photon momentum, the kinematical variable in which on
expands, small to ensure the convergence of the expan
and to allow for a direct comparison with the data. By in
creasing the energy of the photon one will become sensit
to terms that depend on details of the structure of the nucle
beyond the global properties. Terms of second order in
frequency, which are not determined by this theorem, can
543/96/54~2!/904~16!/$10.00
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parametrized in terms of two new structure constants, th
electric and magnetic polarizabilities of the nucleon~see, for
example, Ref.@4#!.

As in all studies with electromagnetic probes, the poss
bilities to investigate the structure of the target are muc
greater if virtual photons are used. A virtual photon allow
one to vary the three-momentum and energy transfer to t
target independently. Therefore it has recently been propos
to also use ‘‘virtual Compton scattering’’~VCS! as a means
to study the structure of the nucleon@5–7#. The proposed
reaction isp(e,e8p)g, i.e., in addition to the scattered elec-
tron also the recoiling proton is detected to completely de
termine the kinematics of the final state consisting of a re
photon and a proton. It is the purpose of this work to exten
the standard low-energy theorem for Compton scattering
real photons to the general case where one or both photo
are virtual. The latter would be the case, e.g., in the reactio
e21p→e21(e21e1)1p. We will refer to both possibili-
ties as ‘‘VCS.’’

There are several different approaches to derive the LE
for Compton scattering of real photons. One was first use
by Low @1#. It made use of the fact that in terms of ‘‘unitarity
diagrams’’ the scattering amplitude is dominated by th
single-nucleon intermediate state. In such unitarity diagram
not to be confused with Feynman diagrams, all intermedia
states are on their mass shell@8#. Lorentz invariance and
gauge invariance then allow a prediction for the amplitude
first order in the frequency. Another approach@2,3#, first
used by Gell-Mann and Goldberger@2#, relies on a com-
pletely covariant description in terms of the basic buildin
blocks of electromagnetic vertices and nucleon propagato
They split the amplitude into two classes,A andB: classA
consists of one-particle-reducible contributions that can b
built up from dressed photon-nucleon vertices and dress
nucleon propagators. ClassB contains all one-particle-
904 © 1996 The American Physical Society
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54 905VIRTUAL COMPTON SCATTERING OFF THE NUCLEON . . .
irreducible two-photon diagrams, where the second pho
couples into the dressed vertex of the first one. Applicati
of two Ward-Takahashi identities, one relating the photo
nucleon vertex operator to the nucleon propagator, the ot
relating the irreducible two-photon vertex to the dressed on
photon vertex, then lead to the same result for the lead
powers of the low-energy amplitude. One can use yet a
other technique introduced by Low@9# to describe brems-
strahlung processes. This technique relies on the observa
that poles in the photon momentum can only be due to ph
ton emission from external nucleon lines of the scatteri
amplitude. Low’s method has, in a modified form, also be
widely used in the framework of partially conserved axia
vector currents~PCAC! @10#.

So far, there have been only a few investigations of t
general VCS matrix element, since most calculations we
restricted to the Compton scattering of real photons. In@11#
electron-proton bremsstrahlung was calculated in first-ord
Born approximation. The photon scattering amplitude, f
one photon virtual and the other one real, was analyzed
terms of 12 invariant functions of three scalar kinematic
variables. In@12# it was shown that the general VCS matri
element—virtual photon to virtual photon—requires 18 in
variant amplitudes depending on four scalar variables.
@13# the reactiongp→p1e1e2 was investigated. Sizable
effects on the dilepton spectrum from the timelike electr
magnetic form factors of the proton were found. Very r
cently the low-energy behavior of the VCS matrix eleme
was investigated@14#. Using Low’s approach@9# the leading
terms in the outgoing photon momentum were derived.
was shown that the virtual Compton scattering amplitude
low energies involves 10 ‘‘generalized polarizabilities’’ tha
depend on the absolute value of the three-momentum of
virtual photon. These new polarizabilities were estimated
a nonrelativistic quark model. In@15# the VCS amplitude
was calculated in the framework of a phenomenological L
grangian including baryon resonances in thes andu chan-
nels as well asp0 and s exchanges in thet channel. A
prediction for theuqW u dependence of the electromagnetic p
larizabilitiesa andb was made.

The purpose of this work is to identify, in an analogou
form to the real CS case, those terms of VCS which a
determined on the basis of only gauge invariance, Lore
invariance, crossing symmetry, and the discrete symmetr
In the following, we will refer to such terms not fixed by thi
LET for simplicity as ‘‘model dependent.’’ By introducing
additional constraints, such as chiral symmetry, a statem
about these terms also becomes possible. This is, howe
beyond the scope of the present work. In our study of lo
energy virtual Compton scattering, below the onset of pi
production, we will mainly work on the operator level. Thi
allows us to work without specifying a particular Lorent
frame or a gauge. We combine the method of Gell-Mann a
Goldberger@2# with an effective Lagrangian approach. Clas
A is obtained in the framework of a general effective La
grangian describing the interaction of a single nucleon w
the electromagnetic field@4#. In the specific representation
we choose, this turns out to be a simple covariant and ga
invariant ‘‘modified Born term’’ expression, involving on-
shell Dirac and Pauli nucleon form factorsF1 andF2. The
Ward-Takahashi identities then allow us to determine t
on
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leading-order term of the unknown classB contribution in an
expansion in both the initial and final photon momenta. Fu
thermore, with the help of crossing symmetry a definite pr
diction can be made concerning the order at which one e
pects model-dependent terms.

Our work is organized as follows. We start out in Sec.
by outlining the general structure of the VCS Green’s func
tion in the framework of Gell-Mann and Goldberger. We
state the ingredients for the derivation of the LET, namel
crossing symmetry and gauge invariance. Section III deriv
the LET for virtual photon Compton scattering and we dis
cuss the leading terms of the matrix element for the reacti
e21p→e21p1g in the center-of-mass frame. As the no
tion of ‘‘Born terms’’ is important for the LET, we comment
on this aspect in Sec. IV and point out ambiguities that ari
in their definition, both for real and virtual photons. Ou
results are summarized and put into perspective in Sec. V

II. STRUCTURE OF THE VIRTUAL COMPTON
SCATTERING TENSOR AND GAUGE INVARIANCE

In this section we will define the Green’s functions an
the kinematical variables relevant for the discussion of VC
off the proton. We will consider the constraints imposed b
the fundamental requirements of gauge invariance, Loren
invariance, and crossing symmetry. We do this in the fram
work of a manifestly covariant description, incorporating
gauge invariance in its strong version, namely, in the form
the Ward-Takahashi identities@16,17#. The approach is simi-
lar to that of@3# using, however, a somewhat more moder
formulation.

The electromagnetic three-point and four-point Green
functions are defined as

Gab
m ~x,y,z!5^0uT@Ca~x!C̄b~y!Jm~z!#u0&, ~2.1!

Gab
mn~w,x,y,z!5^0uT@Ca~w!C̄b~x!Jm~y!Jn~z!#u0&,

~2.2!

whereJm is the electromagnetic current operator in units o
the elementary charge,e.0, e2/4p51/137, and whereC
denotes a renormalized interpolating field of the proton;T
denotes the covariant time-ordered product@18#. Electromag-
netic current conservation,]mJ

m50, and the equal-time
commutation relation of the charge density operator with th
proton field,

@J0~x!,C~y!#d~x02y0!52d4~x2y!C~y!, ~2.3!

are the basic ingredients for deriving Ward-Takahashi ide
tities @16,17#.

Using translation invariance, the momentum-spac
Green’s functions corresponding to Eqs.~2.1! and ~2.2! are
defined through a Fourier transformation,

~2p!4d4~pf2pi2q!Gab
m ~pf ,pi !

5E d4xd4yd4zei ~pf•x2pi•y2q•z!Gab
m ~x,y,z!, ~2.4!
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906 54S. SCHERER, A. YU. KORCHIN, AND J. H. KOCH
~2p!4d4~pf1q82pi2q!Gab
mn~P,q,q8!

5E d4wd4xd4yd4zei ~pf•w2pi•x2q•y1q8•z!Gab
mn~w,x,y,z!,

~2.5!

wherepi andpf refer to the four-momenta of the initial an
final proton lines, respectively,P5pi1pf , and whereq and
2q8 denote the momentum transferred by the currentsJm

andJn, respectively. We note thatGab
m depends on two in-

dependent four-momenta, e.g.,pi andpf . In particular, it is
not assumed that these momenta obey the mass-shell c
tion pi

25pf
25M2. Similarly, Gab

mn depends on three four
momenta which are completely independent as long as
considers the general off-mass-shell case. This will prove
be an important ingredient below when analyzing the gene
structure of the VCS tensor.

Finally, the truncated three-point and four-point Green
functions relevant for our discussion of VCS are obtained
multiplying the external proton lines by the inverse of th
corresponding full~renormalized! propagators,

Gm~pf ,pi !5@ iS~pf !#
21Gm~pf ,pi !@ iS~pi !#

21, ~2.6!

Gmn~P,q,q8!5@ iS~pf !#
21Gmn~P,q,q8!@ iS~pi !#

21,
~2.7!

where, for convenience, from now on we omit spinor ind
ces. Using the definitions above, it is straightforward to o
tain the Ward-Takahashi identities

qmGm~pf ,pi !5S21~pf !2S21~pi !, ~2.8!

qmGmn~P,q,q8!5 i ~S21~pf !S~pf2q!Gn~pf2q,pi !

2Gn~pf ,pi1q!S~pi1q!S21~pi !!.

~2.9!

Following Gell-Mann and Goldberger@2#, we divide the
contributions to Gmn into two classes, A and B,
Gmn5GA

mn1GB
mn , where classA consists of thes- and

u-channel pole terms; classB contains all the other contri-
butions. We emphasize that this procedure does not res
the generality of the approach. The separation into the
classes is such that all terms which are irregular forqm→0
~or q8m→0) are contained in classA, whereas classB is
regular in this limit. Strictly speaking, one also assumes t
there are no massless particles in the theory which co
make a low-energy expansion in terms of kinematical va
ables impossible@1#; furthermore, the contribution due to
t-channel exchanges, such as ap0, has not been considered

The contribution from classA, expressed in terms of the
full renormalized propagator and the irreducible electrom
netic vertices, reads

GA
mn5Gn~pf ,pf1q8!iS~pi1q!Gm~pi1q,pi !

1Gm~pf ,pf2q!iS~pi2q8!Gn~pi2q8,pi !.

~2.10!

Note thatGA
mn is symmetric under crossing,q↔2q8 and

m↔n, i.e.,
d

ondi-
-
one
to
ral

’s
by
e

i-
b-

trict
two

hat
uld
ri-

.

ag-

GA
mn~P,q,q8!5GA

nm~P,2q8,2q!. ~2.11!

Since also the totalGmn is crossing symmetric, this must als
be true for the contribution of classB separately@2#. Using
the Ward-Takahashi identity, Eq.~2.8!, one obtains the fol-
lowing constraint for classA as imposed by gauge invari
ance:

qmGA
mn~P,q,q8!5 i ~Gn~pf ,pf1q8!2Gn~pi2q8,pi !

1S21~pf !S~pi2q8!Gn~pi2q8,pi !

2Gn~pf ,pf1q8!S~pi1q!S21~pi !!

[ f A
n ~P,q,q8!. ~2.12!

Similarly, contraction ofGA
mn with qn8 results in

qn8GA
mn~P,q,q8!52 i ~Gm~pf ,pf2q!2Gm~pi1q,pi !

1S21~pf !S~pi1q!Gm~pi1q,pi !

2Gm~pf ,pf2q!S~pi2q8!S21~pi !!

52 f A
m~P,2q8,2q!, ~2.13!

which is, of course, the same constraint which one obta
from Eq. ~2.12! using the crossing-symmetry property o
GA

mn :

qn8GA
mn~P,q,q8!52~2qn8!GA

nm~P,2q8,2q!

52 f A
m~P,2q8,2q!. ~2.14!

Combining Eqs.~2.9! and ~2.12! generates the following
constraint for the contribution of classB:

qmGB
mn5qm~Gmn2GA

mn!

5 i @Gn~pi2q8,pi !2Gn~pf ,pf1q8!#, ~2.15!

relating it to the one-photon vertex@3#. Once again, the sec
ond gauge-invariance condition, obtained by contract
with qn8 , is automatically satisfied due to crossing symmet

The 434 matrixGB
mn of classB is a function of the three

independent four-momentaP, q, andq8. It is important to
realize that the 12 components of these momenta are in
pendent variables only for the complete off-shell case, i.e
one allows for arbitrary values ofpi

2 and pf
2 This will be

important when making use of the constraints imposed
gauge invariance. Using Lorentz invariance, gauge inva
ance, crossing symmetry, parity and time-reversal inva
ance, it was shown in@12# that the generalGmn for VCS off
a free nucleon with both photons virtual consists of 18 ind
pendent operator structures. The functions associated
each operator depend on four Lorentz scalars, e
q2,q82,n5P•q5P•q8, and t5(pi2pf)

2. When allowing
the external nucleon lines to be off their mass shell, one w
have an even more complicated structure@19#.

However, in our derivation of the low-energy behavior
the electromagnetic four-point Green’s function we will n
require the full structure as discussed in@12#. At low ener-
gies we expandGB

mn in terms of the four-momentaqm and
q8m,
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GB
mn5amn~P!1bmn,r~P!qr1cmn,s~P!qs81•••, ~2.16!

where the coefficients are 434 matrices and can be ex
pressed in terms of the 16 independent Dirac matric
1,g5 ,g

m,gmg5 ,s
mn. An expansion of the type of Eq.~2.16!

is expected to work below the lowest relevant particl
production threshold, in this case the pion-production thre
old; we refer the reader to, e.g., Ref.@20#, where a similar
discussion for the case of pion photoproduction can
found.

So far we have considered general features of the ope
tors entering into the description of VCS. It is clearly one
the advantages of using a covariant description of the type
Eq. ~2.16! that it neither uses a particular Lorentz system n
a specific gauge. When referring to powers ofq or q8, we
mean the ones coming from the Dirac structures and th
associated functions. This is different when one works on
level of nucleon matrix elements or the invariant amplitud
where also kinematical variables from the spinors or norm
ization factors enter into the power counting.

We conclude this section by noting that the above fram
work can easily be applied to VCS off a spin-0 particle, su
as the pion. In that caseGmn, of course, has no complicated
spinor structure. The building blocks for classA are simply
the corresponding irreducible, renormalized electromagne
vertex for a spinless particle and the full, renormalize
propagatorD(p) @21#.

III. LOW-ENERGY BEHAVIOR OF VCS

In a two-step reaction on a single nucleon, such
g*N→g*N, the intermediate nucleon lines in thes- and
u-channel pole diagrams of classA are off mass shell, while
the external nucleons are on shell. The early, manifestly
variant derivations of the low-energy theorem for Compto
scattering@2,3# took into account that the associated half-of
shell electromagnetic vertex of the nucleon has a differe
and more complicated structure than the free vertex. Ho
ever, it was shown that the model- and representatio
dependent properties of an off-shell nucleon do not enter
the leading terms of the full Compton scattering amplitud
when the irreducible two-photon amplitude of classB is in-
cluded consistently. This was explicitly shown by expandin
Eq. ~2.10! to first order in qm and by constructing the
leading-order term ofGB

mn with the help of Eq.~2.15! and
crossing symmetry or, equivalently, the second gaug
invariance constraint. The final result for the amplitude w
given in the laboratory frame and in Coulomb gauge.

In order to obtain the LET for VCS, we will proceed on
the operator level and combine the method of@2,3# with
ideas of an effective Lagrangian approach to Compton sc
tering @4#. Let us first recall that the electromagnetic thre
point and four-point Green’s functions of Eqs.~2.1! and~2.2!
depend on the choice of the interpolating fieldC of the
proton, i.e., are ‘‘representation dependent.’’ Therefore, t
truncated Green’s functions in momentum space, Eqs.~2.6!
and ~2.7!, are in general not directly related to observable
except forpi

25pf
25M2. Consequently, the separation int

classA and classB is necessarily representation depende
since the total Green’s function, Eq.~2.6!, as well as the
individual building blocks of classA are representation de-
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pendent; this has of course no effect on the final on-sh
result, which is representation independent. This was expl
itly shown in @22# for the case of real Compton scattering of
the pion. On the other hand, for any given appropriate inte
polating field satisfying the equal-time commutation relatio
of Eq. ~2.3! the Ward-Takahashi identities, Eqs.~2.8! and
~2.9!, hold, providing important consistency relations be
tween the different Green’s functions. In the following we
will make use of these relations for arbitraryP, q, andq8,
which, in particular, includes arbitrarypi

2 andpf
2 Only at the

end, the observable on-shell case will be considered.

A. Derivation of the low-energy theorem

We will derive this theorem by using a convenient repre
sentation, the ‘‘canonical form,’’ of the most general an
gauge invariant effective Lagrangian. In the framework o
effective Lagrangians, a canonical form is defined as a re
resentation with the minimal number of independent stru
tures ~see, e.g.,@23#!. For the classA terms, we need the
electromagnetic vertex and the propagator of the nucleo
Below the pion-production threshold, the Lagrangian for
single proton, interacting with an electromagnetic field, ca
be brought into the canonical form@4#

LgNN5C̄~ iD” 2M !C2e(
n51

`

@~2h !n21]nFmn#F1nC̄gmC

2
e

4M S kFmn1 (
n51

`

@~2h !nFmn#F2nD C̄smnC,

~3.1!

whereDmC5(]m1 ieAm)C, Fmn5]mAn2]nAm . The elec-
tromagnetic structure of the proton is accounted for throug
the Dirac and Pauli form factors,F1 and F2, respectively,
which are expanded according to

F1~q
2!511 (

n51

`

~q2!nF1n ,

F2~q
2!5k1 (

n51

`

~q2!nF2n , k51.79. ~3.2!

To this representation of the Lagrangian belongs,
course, a particular canonical Lagrangian of ordere2 that
generates the classB terms. However, as will be seen below
we do not need to know it in detail for this derivation
Clearly, Eq.~3.1! is invariant under the gauge transformatio
C→exp@2iea(x)#C, andAm→Am1]ma. In order to arrive
at Eq.~3.1!, use has implicitly been made of the method o
field transformations~see, e.g.,@23–26#!. It should be
stressed that all ingredients needed for Eq.~3.1! are on-shell
quantities that can be determined model independently fro
electron-proton scattering. Any explicit off-shell dependenc
of the irreducible three-point Green’s function has bee
transformed away and will thus not show up in the classA
contribution. Such transformations, however, generate co
comittant irreducible classB terms for the amplitude that
must be treated consistently~see@4# for details!.
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908 54S. SCHERER, A. YU. KORCHIN, AND J. H. KOCH
Using standard Feynman rules, the irreducible vertex
sociated with the effective Lagrangian of Eq.~3.1! is found
to be

Geff
m ~pf ,pi !5Geff

m ~pf2pi !5gmF1~q
2!1

12F1~q
2!

q2
qmq”

1 i
smnqn

2M
F2~q

2!, q5pf2pi . ~3.3!

Since it is an important ingredient in our derivation of t
LET, we emphasize that the vertex of Eq.~3.3! satisfies the
Ward-Takahashi identity of Eq.~2.8!; the corresponding
propagator in the representation that yields Eq.~3.1! is the
Feynman propagator of a point proton. As a consequenc
gauge invariance, Eq.~3.1! automatically generates a term
the vertex proportional toqm.

We note that the effective Lagrangian approach provi
a natural explanation for the vertex of Eq.~3.3! which has
previously been used by several authors as a simple mea
restore gauge invariance in the form of the Ward-Takaha
identity ~see, for example,@27#!. However, it is not an inde-
pendent building block for any amplitude, but must be us
together with the corresponding irreducible classB terms for
the reaction in question.

In principle, we could now proceed to construct the m
general effective Lagrangian relevant to generate the co
sponding classB terms for VCS. This would allow us, to
gether with a calculation of the pole terms involving t
vertex of Eq.~3.3!, to determine the model-dependent term
of Gmn at low energies. However, at this point it is mo
straightforward to apply the results of the last section. W
obtain forGA

mn in the framework of Eqs.~3.1! and ~3.3!

GA,eff
mn 5Geff

n ~2q8!iSF~pi1q!Geff
m ~q!

1Geff
m ~q!iSF~pi2q8!Geff

n ~2q8!. ~3.4!

Making use of Eq.~2.15! to obtain the gauge-invariance co
straint for classB in our representation, we see that it has t
simple form1

qmGB
mn50. ~3.5!

This is due to the fact that the vertex of Eq.~3.3! depends on
the momentum transfer, only. Note that Eq.~3.5! is still an
operator equation, valid for arbitraryP, q, andq8.

ClassA is defined to contain for any representation t
pole terms ofGmn which are singular in the limitqm→0; we
will come back to this point in the next section. We thus c
make for classB the following ansatz for theq dependence

GB
mn~P,q,q8!5am,n1bmr,nqr1cmrs,nqrqs1•••.

~3.6!

The coefficientsam,n, . . . are 434 matrices which have to
be constructed from the 16 Dirac matrices, the metric ten
gab, the completely antisymmetric Levi-Civita pseudotens
eabgd, and the remaining independent variablesPa and

1In the following we omit the subscript ‘‘eff.’’
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q8a. The form of these coefficients will be constrained b
Lorentz invariance, gauge invariance, crossing symmet
and the discrete symmetries,C, P, andT. Contracting this
ansatz withqm , the condition for the classB operator, Eq.
~3.5!, becomes

qmGB
mn5am,nqm1bmr,nqrqm1•••50. ~3.7!

Multiple partial differentiation of Eq.~3.7! with respect to
qa results in the following conditions for the coefficients,

am,n50, bmr,n1brm,n50, (
6 perm.
~m,r,s!

cmrs,n50, . . . .

~3.8!

Since current conservation is expected to hold for arbitra
q, the technique of partial differentiation to obtain condition
for the coefficients can easily be extended to obtain co
straints for higher-order coefficients. The simple constrain
of Eq. ~3.8! are based on the fact thatPa, qa, andq8a are
independent variables; an implicit dependence would ma
matters more complicated.

From am,n50 we can already conclude that the operat
of classB contains no contributions which involve powers o
q8 only, without powers ofq. Taking Eq.~3.8! into account,
we now expand with respect toq8,

GB
mn~P,q,q8!5Bmr,nqr1Bmr,naqrqa81•••1Cmrs,nqrqs

1Cmrs,naqrqsqa81•••. ~3.9!

If we apply crossing symmetry to Eq.~3.9! we find, as ex-
pected, that indeed all terms vanish that involve powers
q8 only. Thus we find for the leading term of the mode
dependent classB,

GB
mn~P,q,q8!5Bmr,na~P!qrqa81O~qqq8,qq8q8!,

Bmr,na52Brm,na5Bna,mr, ~3.10!

where the conditions forBmr,na result from gauge invariance
and crossing symmetry, respectively. To be specific, af
imposing the constraints of Eq.~3.10! and of the discrete
symmetries one obtains three possible structures forBmr,na

on theoperator level:

Bmr,na~P!5 i ~gmngra2grngma! f 1~P
2!1 i ~gmnPrPa

1graPmPn2grnPmPa2gmaPrPn! f 2~P
2!

1emrnag5f 3~P
2!, e012351. ~3.11!

In summary, we have shown that on theoperator levelthe
terms of order O(qa

21), O(q8a
21), O(1), O(qa), and

O(qa8 ) are contained inGA,eff
mn , Eq. ~3.4!. They are therefore

determined model independently through on-shell quantiti
model-dependent terms first appear in the orderO(qaqb8 ); all
operators which contain either only powers ofq or only
powers ofq8 can entirely be obtained from thisGA, eff

mn In the
next section we will discuss the implications of these fin
ings for the on-shell VCS matrix element.



o

e,

-

or,
o

rst
ac
rts
r

54 909VIRTUAL COMPTON SCATTERING OFF THE NUCLEON . . .
B. Application

We now want to apply the above result to the observa
case where the nucleons are on mass shell, i.e., we con
the matrix element. For that purpose we first define the
trix element ofGmn between positive-energy spinors as

Vsisf
mn ~P,q,q8!5ū~pf ,sf !G

mn~P,q,q8!u~pi ,si !.

~3.12!

At this point we have to keep in mind that for the variab
we use,P, q, andq8, the on-shell conditionpi

25pf
25M2 is

equivalent toP•(q2q8)50, andP21(q2q8)254M2. In
other words, the four-momenta chosen for the descriptio
the off-shell Green’s function will no longer be independ
for the on-shell invariant amplitude. In particular, the distin
tion between powers ofq only or, respectively, ofq8 only in
Gmn is not valid anymore for the matrix element sin
q•P5q8•P.

Let us consider as an application the case where the in
photon is virtual and spacelike and the final photon is r
g* (q,e)1p(pi ,si)→g(q8,e8)1p(pf ,sf). The following
discussion does not include the Bethe-Heitler terms of
physical processp(e,e8p)g, where the real photon is rad
ated by the initial or final electron, since these terms are
ble
sider
ma-

les

n of
ent
c-

ce

itial
eal,

the
i-
not

part of Gmn. For the final photon the Lorentz condition
q8•e850 is automatically satisfied, and we are free t
choose, in addition, the Coulomb gaugee8m5(0,eW8) which
implies qW 8•eW850. We write the invariant amplitude in the
convention of @28# as M52 ie2emM

m, where
em5eūgmu/q

2 is the polarization vector of the virtual pho-
ton. With a suitable choice for the reference fram
qm5(q0,0,0,uqW u), the Lorentz conditionq•e50 and current
conservation,qmM

m50, may be used to reexpress the in
variant amplitude as@29#

M5 ie2S eWT•MW T1
q2

q0
2 ezMzD . ~3.13!

Note that asq0→0, bothez andMz tend to zero such that
M in Eq. ~3.13! remains finite. Making use that we now
know the general structure of the first undetermined operat
Eq. ~3.11!, we can now consider the matrix element up t
second order inq or q8. This will enable us to explicitly
show how far the amplitude is determined and where the fi
model-dependent terms enter. After a reduction from Dir
spinors to Pauli spinors the transverse and longitudinal pa
of Eq. ~3.13! may be expressed in terms of eight and fou
independent structures, respectively@4,14,30#:
eWT•MW T5eW8* •eWTA11 isW •~eW8*3eWT!A21~ q̂83eW8* !•~ q̂3eWT!A31 isW •~ q̂83eW8* !3~ q̂3eWT!A41 i q̂•eW8*sW •~ q̂3eWT!A5

1 i q̂8•eWTsW •~ q̂83eW8* !A61 i q̂•eW8*sW •~ q̂83eWT!A71 i q̂8•eWTsW •~ q̂3eW8* !A8 , ~3.14!

ezMz5ezeW8* •q̂A91 i ezeW8* •q̂sW •~ q̂83q̂!A101 i ezsW •~ q̂3eW8* !A111 i ezsW •~ q̂83eW8* !A12. ~3.15!
m
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The results for the functionsAi in the c.m. system expande

up toO(2), i.e., uqW 8u2, uqW 8uuqW u, anduqW u2, are shown in Tables
I and II. The derivation of the corresponding expressions
outlined in the Appendix.

In the amplitudesA5 andA9, terms of order 1/uqW 8u appear.
We have not further expanded them inuqW u and kept, e.g., the
on-shell form factorsGM andGE . This was done mainly to
stress that according to Low’s theorem@9# these divergent
terms are already entirely fixed. They are due to soft rad
tion off external lines, with the intermediate line approachi
the mass shell in the pole terms. They can be obtained fr
e.g., the Born terms that contain the same on-shell infor
tion ~see however the caveats in Sec. IV!. In order to
uniquely identify these singular contributions we have e
panded all relevant expressions in terms ofuqW u anduqW 8u. This
is the reason why the argument of the form factors

Q25q2u uqW 8u50522M (Ei2M ), whereEi5AM21qW 2.
Not only the irregular contribution, but all terms in th

amplitudes up to terms linear in the photon momenta
uniquely determined through well-known properties of t
free nucleon: its mass, charge, and magnetic moment. T
are the terms that make up the LET for VCS. Up toO(2),
the coefficients in addition also involve the electric me
square radius, which we know from electron-proton scat
d

is

ia-
ng
om,
a-

x-

is

e
are
he
hese

an
ter-

ing, as well as the electric and magnetic polarizabilitie
which also enter in real Compton scattering. The latter a
the coefficients of the first model-dependent terms in t
expansion of the scattering matrix element. Their speci
form, and thus the definitions of the polarizabilities, depen
on the particular representation one chooses for the effect
Lagrangian; theO(2) results in the tables are specific for th
‘‘canonical form,’’ which happens to be the standard choic
for real Compton scattering. Note that to the order consi
eredA752A85A10. The amplitudesA1 andA9 contain the
electric polarizabilityā of the proton whereasA3 involves
the magnetic polarizabilityb̄ @4#. In terms of the functions
f i(P

2) of Eq. ~3.11! they are defined as

ā5e2@ f 1~4M
2!14M2f 2~4M

2!#, b̄52e2f 1~4M
2!.
~3.16!

The functionf 3(4M
2) only contributes at orderO(3), since

g5 connects upper and lower component of positive-ener
spinors which effectively leads to an additional power o
uqW u or uqW 8u in the matrix element.

In Table III we also show the results for the transvers
amplitudes in the c.m. frame for real Compton scatterin
SinceA552A6 andA752A8 the result effectively involves
six independent amplitudes as required by time reversal
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TABLE I. Transverse functionsAi of Eq. ~3.14! in the c.m. frame. The functions are expanded in term

of uqW 8u and uqW u of the final real and initial virtual photon, respectively.Ni5A(Ei1M )/2M is the normaliza-

tion factor of the initial spinor, whereEi5AM21uqW u2. GE(q
2)5F1(q

2)1(q2/4M2)F2(q
2) and

GM(q
2)5F1(q

2)1F2(q
2) are the electric and magnetic Sachs form factors, respective

r E
256GE8 (0)5(0.7460.02) fm2 is the electric mean square radius@31# andk51.79 the anomalous mag-

netic moment of the proton.Qm is defined asqmu uqW 8u505(M2Ei ,qW ), Q
2522M (Ei2M ), andz5q̂8•q̂. ā

and b̄ are the electric and magnetic Compton polarizabilities of the proton, respectively.

A1 2
1

M
1

z

M2 uqWu2S 1

8M31
rE
2

6M
2

k

4M32
ā

e2DuqW8u21S 1

8M31
rE
2

6M
2

z2

M31
~11k!k

4M3 DuqWu2

A2

112k

2M2 uqW8u2
k2

4M3 uqW8u21
zk

2M3 uqW8uuqWu2
~11k!2

4M3 uqWu2

A3 2
1

M2 uqWu1S 1

4M31
b̄

e2DuqW8uuqWu1
~322k2k2!z

4M3 uqWu2

A4 2
~11k!2

2M2 uqWu2
~21k!k

4M3 uqW8uuqWu1
~11k!2z

4M3 uqWu2

A5 2
NiGM~Q2!

~Ei1zuqWu!~Ei1M!

uqWu2

uqW8u
1

~11k!k

4M3 uqWu2

A6

11k

2M2 uqW8u2
~11k!k

4M3 uqW8u22
~11k!z

2M3 uqW8uuqWu

A7 2
113k

4M3 uqW8uuqWu

A8

113k

4M3 uqW 8uuqW u
ne
-

on
for
n-
s
-
g
n’s
s

o-
variance@4#. When comparing with other expressions in th
literature@1,2,4,30#, one has to keep in mind that they usu
ally are given in the laboratory frame. This observation a
counts, for example, for the difference of the LET forA1 and
A3 of real Compton scattering in the laboratory and the c.
frame. Note also that the 1/uqW 8u singularity disappears in the
real Compton scattering limit, sincev5uqW u5uqW 8u in this
case.

In conclusion, the low-energy behavior of the VCS matr
element for e21p→e21p1g, expanded up to order
O(2) in uqW u and uqW 8u, contains, in addition to the structure
coefficients that enter into real Compton scattering, also t
electric mean square radius and the electric and magn
Sachs form factors in the spacelike region which all can
obtained from electron scattering off the proton. For the r
actiong1p→p1e1e2 @13#, the analogous information for
e
-
c-

m.

ix

he
etic
be
e-

timelike momentum transfers is needed. However, here o
has to keep in mind that this information is not directly ac
cessible for 0,q2,4M2.

IV. THE BORN TERMS

From the above discussion in a particular representati
one might be tempted to conclude that the leading terms
VCS, on the operator level or for the amplitude, are in ge
eral simply given by ‘‘Born terms.’’ However, some caveat
are in order. First, one has to keep in mind that the low
energy behavior was obtained from considerations involvin
the most general ansatz for the truncated four-point Gree
function. All terms one can think of are included into clas
A and classB. In, e.g., the derivation of@3# of the LET for
Compton scattering, where no special representation is ch
TABLE II. Longitudinal functionsAi of Eq. ~3.15! in the c.m. frame. See caption of Table I.

A9

NiGE~Q
2!

~Ei1zuqWu!~Ei1M!

uqWu2

uqW8u
2

1

M
1

z

M2 uqWu2S 1

8M31
rE
2

6M
2

k

4M32
ā

e2DuqW8u21S 1

8M31
rE
2

6M
2

z2

M3DuqWu2

A10 2
113k

4M3 uqW8uuqWu

A11 2
112k

2M2 uqW8u1
k2

4M3 uqW8u21
~11k!z

4M3 uqW8uuqWu1
112k

4M3 uqWu2

A12
(11k)z
2M2 uqW 8u2

(11k)kz
4M3 uqW 8u22

(11k)(2z221)
4M3 uqW 8uuqW u2

(11k)z
4M3 uqW u2
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sen, it is clearly shown thatboth classA and classB terms
are needed. Implicit in all derivations is of course the a
sumption that a description in terms of observable asym
totic hadronic degrees of freedom is sufficient and compl
at low energies. Even though subnucleonic degrees of f
dom, quarks and gluons, are ultimately the origin of t
structure of the nucleon, it was shown@32,33# that an effec-
tive field-theory approach@34–37# in terms of hadrons is
meaningful at low energies, thus allowing a classificati
into classA and classB.

Second, there is an ambiguity concerning what exactly
meant by ‘‘Born terms,’’ once phenomenological form fa
tors are introduced and the result is not obtained from
microscopic Lagrangian. We will illustrate this ambiguity b
considering different representations of the photon-nucle
vertex. All representations contain the same information c
cerning the electromagnetic structure of the on-shell nucle
as obtained in electron-nucleon scattering, but differ in

TABLE III. Transverse functionsAi in the c.m. frame for both

photons real:q25q8250, uqW u5uqW 8u5v.

A1 2
1

M
1

z

M2v1S2 z2

M31
~21k!k

4M3 1
ā

e2Dv2

A2
112k

2M2 v2
112k~12z1k!

4M3 v2

A3 2
1

M2v1S11~32k~21k!!z

4M3 1
b̄

e2Dv2

A4 2
~11k!2

2M2 v1
z1k~21k!~z21!

4M3 v2

A5 2
11k

2M2 v1
~2z1k!~11k!

4M3 v2

A6
11k

2M2 v2
~2z1k!~11k!

4M3 v2

A7 2
113k

4M3 v2

A8
113k

4M3 v2
s-
p-
te
ee-
e

n

is
-
a

y
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n-
on,
he

half-off-shell situation encountered in thes- andu-channel
pole terms of Compton scattering. This difference is,
course, accompanied by different classB terms such that the
total result is the same.

To explain the above points in more detail, we will firs
reconsider the most general expression for classA and, with-
out going to a special representation, identify those ter
which contain the irregular contribution forqm→0 or
q8m→0. We find that these contributions can be expresse
terms of on-shell quantities, in our case the Dirac and Pa
form factorsF1 andF2. We then show that the use of on
shell equivalent electromagnetic vertices gives rise to
same results for the VCS matrix element as far as theirregu-
lar terms are concerned, but not every choice will result
‘‘Born terms’’ which are gauge invariant.

A. Irregular contribution to the VCS matrix element

When calculatingVsisf
mn , the irregular contribution origi-

nates from the singularities of the propagatorsS(pi1q) and
S(pi2q8) in the s andu channels, respectively. To be spe
cific, below pion-production threshold the renormalized, fu
propagator can be written as

S~p1q!5SF~p1q!1regular terms,

~p1q!2,~M1mp!2, ~4.1!

whereSF(p) denotes the free propagator of a nucleon w
massM . By ‘‘regular terms’’ we mean terms which have
well-defined, nonsingular limit forqm→0. Thus, as long as
we are only interested in the irregular terms, we can sim
replace the full, renormalized propagator by the free Fe
man propagator,SF .

The most general form of the irreducible, electromagne
vertex of the nucleon can be expressed in terms of 12 op
tors and associated form functions@38,39#. These functions
depend on three scalar variables, e.g., the squared mom
tum transfer and the invariant masses of the initial and fi
nucleon lines. A convenient parametrization ofGm(pf ,pi) is
given by
ll

can
Gm~pf ,pi !5 (
a,b51,2

La~pf !S gmF1
ab1 i

smnqn

2M
F2

ab1
qm

M
F3

abDLb~pi !, Fi
ab5Fi

ab~q2,pf
2 ,pi

2!, ~4.2!

whereq5pf2pi , andL6(p)5(M6p” )/2M . We have chosen a form which differs slightly from the convention of@39# in the
definition of the projection operators and the normalization of theF3 form functions. We only need the following on-she
properties of the form functions:

F1
11~q2,M2,M2!5F1~q

2!, F2
11~q2,M2,M2!5F2~q

2!, F3
11~q2,M2,M2!5F3~q

2!50, ~4.3!

whereF1 andF2 are the standard Dirac and Pauli form factors andF3 vanishes because of time-reversal invariance. One
also show thatF3(q

2) vanishes due to current conservation.
We now systematically isolate the irregular part of, e.g., thes-channel pole diagram,2

VA,s
mn 5ū~pf !G

n~pf ,pf1q8!iS~pi1q!Gm~pi1q,pi !u~pi !'ū~pf !G
n~pf ,pf1q8!iSF~pi1q!Gm~pi1q,pi !u~pi !,

2In the following we omit the indicessi andsf .
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where we made use of Eq.~4.1!, and where the symbol' denotes equality up to regular terms. We now insert Eq.~4.2! for
Gm(pi1q,pi) and useL2(pi)u(pi)50 andL1(pi)u(pi)5u(pi) to obtain

VA,s
mn 'ū~pf !G

n~pf ,pf1q8!iSF~pi1q!$L1~pi1q!@gmF1
11~q2,s,M2!1•••#1L2~pi1q!@gmF1

21~q2,s,M2!1•••#%u~pi !,

wheres5(pi1q)2. SinceSF(pi1q)L2(pi1q) results in a regular term, we have

VA,s
mn ' i ū~pf !G

n~pf ,pf1q8!
p” i1q”1M

s2M2 L1~pi1q!@gmF1
11~q2,s,M2!1•••#u~pi !.

We now expand the form functions arounds05M2 and note that in the higher-order terms the powers of (s2M2) cancel the
denominator,s2M2, of the Feynman propagator and thus give rise to regular terms,

VA,s
mn 'ū~pf !G

n~pf ,pf1q8!iSF~pi1q!L1~pi1q!S gmF1~q
2!1 i

smrqr

2M
F2~q

2! Du~pi !,

where we made use of Eq.~4.3!. Using L1(pi1q)512L2(pi1q) and then repeating the same procedure fo
Gn(pf ,pf1q8) we finally obtain

VA,s
mn 'ū~pf ,sf !GF1 ,F2

n ~2q8!iSF~pi1q!GF1 ,F2
m ~q!u~pi ,si !, ~4.4!

where we introduced the abbreviation

GF1 ,F2
m ~q!5gmF1~q

2!1 i
smnqn

2M
F2~q

2!. ~4.5!

The procedure for theu-channel part,VA,u
mn is completely analogous and we obtain for the sum ofs- andu-channel contribu-

tions

VA
mn'ū~pf !@GF1 ,F2

n ~2q8!iSF~pi1q!GF1 ,F2
m ~q!1GF1 ,F2

m ~q!iSF~pi2q8!GF1 ,F2
n ~2q8!#u~pi ![VA8

mn , ~4.6!

which only involves on-shell quantities, the Dirac and Pauli form factors and the nucleon mass. Explicit calculation, inclu
the use of the Dirac equation, shows thatVA8

mn of Eq. ~4.6! is, in fact, identical with evaluating Eq.~3.4! between on-shell
spinors. With the help of either Eq.~2.12! or by straightforward calculation it can easily be shown that Eq.~4.6! is gauge
invariant. This is a special feature when working with these particular vertex operators and was essential for the deriva
@14#. It is quite unexpected, since the electromagnetic vertex, Eq.~4.5!, and the nucleon propagator in Eq.~4.6! do not satisfy
the Ward-Takahashi identity~except at the real photon point,q250):

qmGF1 ,F2
m ~pf ,pi !5~p” f2p” i !F1~q

2!ÞSF
21~pf !2SF

21~pi !. ~4.7!

B. Different representations of the on-shell vertex

We now turn to ‘‘Born-term’’ calculations involving other representations of the nucleon current operator, i.e., other w
to introduce the model-independent information about the electromagnetic structure of the free nucleon into the calcula
the lowest-order terms. Two commonly used alternative ways to parametrize the nucleon current operator are@40#

GGE ,GM

m ~pf ,pi !5S 12
q2

4M2D 21S Pm

2M
GE~q2!1

gmP” q”2q”P” gm

8M2 GM~q2! D , ~4.8!

GH1 ,H2

m ~pf ,pi !5gmH1~q
2!2

Pm

2M
H2~q

2!, ~4.9!

whereP5pi1pf and

GE5F11
q2

4M2F2 , GM5H15F11F2 , H25F2 . ~4.10!

Given Eqs.~4.10!, it is straightforward to show the equivalence for the free proton current, the matrix elements of Eqs.~3.3!,
~4.5!, ~4.8!, and~4.9! between free positive-energy spinors. On the other hand, the current operators in Eqs.~4.5!, ~4.8!, and
~4.9! do not satisfy the Ward-Takahashi identity when used in conjunction with free propagators, not even at the real-p
point @recall Eq.~4.7!#:

qmGGE ,GM

m ~pf ,pi !5S 12
q2

4M2D 21 pf
22pi

2

2M
GE~q2!ÞSF

21~pf !2SF
21~pi !, ~4.11!

qmGH1 ,H2

m ~pf ,pi !5~p” f 2p” i !H1~q
2!2

pf
22pi

2

2M
H2~q

2!ÞSF
21~pf !2SF

21~pi !. ~4.12!
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The ‘‘Born terms’’ calculated with these electromagnetic vertices and free-nucleon propagators are

VX
mn5ū~pf ,sf !@GX

n ~pf ,pf1q8!iSF~pi1q!GX
m~pi1q,pi !1GX

m~pf ,pf2q!iSF~pi2q8!GX
n ~pi2q8,pi !#u~pi ,si !, ~4.13!

whereX denotes either the vertex of Eq.~4.8! in terms ofGE ,GM or the vertex of Eq.~4.9! involving H1 ,H2, respectively.
These ‘‘Born terms’’ are by construction crossing symmetric but in both cases not gauge invariant,

qmVGE ,GM

mn 5 i S 12
q2

4M2D 21

GE~q2!ū~pf ,sf !S GGE ,GM

n ~pf ,pi1q!2GGE ,GM

n ~pf2q,pi !1GGE ,GM

n ~pf ,pi1q!
q”

2M

1
q”

2M
GGE ,GM

n ~pf2q,pi ! Du~pi ,si !, ~4.14!

qmVH1 ,H2

mn 5 i @H1~q
2!2H2~q

2!#ū~pf ,sf !@GH1 ,H2

n ~pf ,pi1q!2GH1 ,H2

n ~pf2q,pi !#u~pi ,si !

2 iH 2~q
2!ū~pf ,sf !S GH1 ,H2

n ~pf ,pi1q!
q”

2M
1

q”

2M
GH1 ,H2

n ~pf2q,pf ! Du~pi ,si !. ~4.15!
ve

nt

m
.

With the help of Eqs.~4.8! and~4.9! it is easy to see that in
each case the nonvanishing divergence is of orderq. The fact
that Eqs.~4.14! and ~4.15! do not contain terms of the type
a•q/b•q suggests that in general the different ‘‘Bor
terms,’’ based on equivalent parametrizations of the on-sh
currents, will differ by regular terms, only. It is of cours
conceivable that the amplitude could differ by irregula
terms, which are separately gauge invariant. Thus the ab
argument is not stringent and can only serve as a motivat
for the following claim which is essentially equivalent to
Low’s theorem applied to the particular case of VCS:Any
‘‘Born-term’’ calculation involving electromagnetic current
operators which correctly reproduce the on-shell electr
magnetic current of the nucleon will yield the same irregula
contribution to the VCS matrix element.The key to the proof
of this statement is the fact that any current operator wh
transforms as a Lorentz four-vector can be brought into
form of Eq. ~4.2!. On-shell equivalence then amounts to th
constraint that all operators have the same on-shell limit
the Fi

11 form functions. In general, no statement can b
made for either the other form functions or off-she
kinematics.3 However, as we have seen above, the irregu
contribution of classA, and thus of the total VCS matrix
element, only involves the on-shell information contained
n
ell
e
r
ove
ion

o-
r

ich
the
e
of
e
ll
lar

in

F1
11(q2,M2,M2) and F2

11(q2,M2,M2). Any information
beyond this will give rise to regular terms. Thus the abo
statement is true.

To illustrate the above, we bring for example the curre
operators of Eqs.~4.5! and ~4.9!, involving F1 and F2 or
H1 andH2, respectively, into the general form of Eq.~4.2!.
By using 15L1(p)1L2(p), the result for the commonly
used form of Eq.~4.5! is given by

F1
ab~q2,pf

2 ,pi
2!5F1~q

2!,

F2
ab~q2,pf

2 ,pi
2!5F2~q

2!,

F3
ab~q2,pf

2 ,pi
2!50, a,b51,2.

~4.16!

For the vertex given in Eq.~4.9!, we use$gm,gn%52gmn and
momentum conservation at the vertex to rewrite

~pi1pf !
m

2M
5
p” fg

m1gmp” i
2M

2 i
smnqn

2M
. ~4.17!

By inserting appropriate projection operators in the for
p”5M @L1(p)2L2(p)# and as above, the vertex of Eq
~4.9! can be expressed as
GH1 ,H2

m ~pf ,pi !5L1~pf !S gm@H1~q
2!2H2~q

2!#1 i
smnqn

2M
H2~q

2! DL1~pi !1L2~pf !S gmH1~q
2!

1 i
smnqn

2M
H2~q

2! DL1~pi !1L1~pf !S gmH1~q
2!1 i

smnqn

2M
H2~q

2! DL2~pi !

1L2~pf !S gm@H1~q
2!1H2~q

2!#1 i
smnqn

2M
H2~q

2! DL2~pi !. ~4.18!

3Further conditions on the form functions can be derived from the Ward-Takahashi identity and discrete symmetry requirements@38,39#.
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Of course, Eq.~4.18! contains the same on-shell informatio
as Eq.~4.5!, since the form factors satisfy Eq.~4.10!. On the
other hand, the expressions for all the otherFi

ab form func-
tions differ. This is why the two ‘‘Born-term’’ calculations
based on these two vertices differ with respect to regu
terms. It is straightforward to extend the same considerat
to the vertex involvingGE andGM .

In conclusion, we have shown that a calculation based
only the ‘‘Born terms,’’ built from any of the many possibl
on-shell equivalent vertices and free nucleon propagat
yields the same results for theirregular terms as the LET.
Thus these ‘‘Born terms’’ will differ among each othe
through regular terms. Furthermore, such ‘‘Born terms’’ a
in general, not gauge invariant; an exception is the co
monly used form involving the Dirac and Pauli form facto
F1 and F2. ‘‘Generalized Born terms’’ which are mad
gauge invariant by hand through anad hocprescription also
differ by regular terms.

Important starting point for the derivation of the LET a
the irregular terms. It is thus also possible to split the to
VCS amplitude into ‘‘Born terms’’ plus ‘‘rest,’’ instead o
classA andB amplitudes, to arrive at the same result for t
LET, i.e., up to and including terms linear in the phot
three-momenta. In general, this result will have contributio
from ‘‘Born terms’’ and the ‘‘rest’’ amplitude. If one uses
‘‘generalized Born amplitude,’’ all the terms appearing in t
LET are due to the expansion of the Born amplitude. It i
well-known feature of soft-photon theorems that they can
make statements about terms which are separately gaug
variant@41–43#. One has to keep this in mind when discus
ing the structure-dependent higher-order terms of VCS,
one needs to specify which Born or class-A terms have been
separated. For example, in@14# the ‘‘Born terms’’ involving
F1 andF2 where separated since they provide without a
further manipulation a gauge-invariant amplitude. Then
residual part with respect to these particular ‘‘Born term
was parametrized in terms of generalized polarizabilities
natural question to ask is what would have happened had
separated a different choice of ‘‘generalized Born term
and defined generalized polarizabilities in an analogous fa
ion with respect to the corresponding residual amplitude. O
viously one would, in general, have found different nume
cal values for the new generalized polarizabilities in orde
obtain the same total result.

V. CONCLUSIONS

In studying the structure of composite strongly interact
systems the electromagnetic interaction has been the t
tional and precise tool of investigation. In scattering of ele
trons from a nucleon, our knowledge is restricted to t
form factors that we can extract from experiments. Ev
though we have not yet been able to fully explain this inf
mation on the basis of QCD, it is important to look for oth
observables allowing us to test approximations to the ex
QCD solution and effective, QCD inspired models. Such
fective models are expected to work especially at low en
gies. The electron accelerators now make it possible to s
virtual Compton scattering, which is clearly more power
in probing the nucleon than the scattering of real photons
analyzing Compton scattering it is important to know ho
n
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much of the prediction is not a true test of a model, but fixe
due to general principles. These model-independent pred
tions for virtual Compton scattering were the main topic o
our discussion.

The interest in virtual Compton scattering has also be
due to another aspect: When studying reactions on a nucle
such as (e,e8p), the nucleon interacting with the electromag
netic probe is necessarily off its mass shell. We have
model-independent information for the behavior of such
nucleon and any conclusion about genuine medium mod
cations must be based on firm theoretical ground how to d
with a single nucleon under these kinematical circumstanc
In fact, such a discussion depends very much on what o
chooses as an interpolating field for the intermediate, n
observed nucleon. This clearly makes the ‘‘off-shell beha
ior’’ of the nucleon representation dependent and unobse
able. We discussed how certain features of the off-shell el
tromagnetic vertex of the nucleon can be shifted in
irreducible, reaction-specific terms for the reaction amp
tude. Two-step reactions on a free nucleon, like~virtual!
Compton scattering, allow us to test many aspects of deal
with an intermediate, off-shell nucleon under simpler ci
cumstances, without complications from, e.g., exchange c
rents or final state interactions. Understanding these asp
on the single-nucleon level would seem a prerequisite bef
any exotic claims can be made for nuclear reactions.

We have studied the virtual Compton scattering first o
the operator level. Using the requirement of gauge invar
ance, as expressed by the Ward-Takahashi identity, we
rived constraints for the operator that determine terms up
and including linear in the four-momentaq andq8. Also, we
showed that on the operator level terms involving terms d
pending only onq or only onq8 are determined model in-
dependently in terms of on-shell properties of the nucleon

To obtain these results, we used the method of Gell-Ma
and Goldberger, by splitting the contributions into gener
pole terms~classA) and the one-particle irreducible two-
photon contributions~classB). We calculated classA below
pion-production threshold in the framework of a specific re
resentation for the most general effective Lagrangian co
patible with Lorentz invariance, gauge invariance and d
crete symmetries. This approach was introduced in@4# as a
method for writing the general structure of the Compto
scattering amplitude in a way that allows one best to discu
its low-energy behavior. In this connection, we also show
the origin for a commonly used form of the electromaget
vertex of the nucleon and stated the consistency conditio
for its use.

After discussing the leading terms of the VCS operato
we considered thematrix elementfor g* p→gp in the
photon-nucleon c.m. frame. We found that the VCS amp
tude up to and including terms linear in the initial and fina
photon three-momentum can be expressed in terms of inf
mation one can obtain from electron-proton scattering. Th
is the result analogous to the LET for the real Compto
scattering amplitude. As we also showed, the next order
terms involvinguqW 8u2, uqW 8uuqW u, and uqW u2—is also completely
specified but now requires in addition also the electroma
netic polarizabilitiesā and b̄ encountered inreal Compton
scattering. In other words, new structure-dependent inform
tion can only appear at order 3 or higher in the thre
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momenta. Our results concern the expansion in terms
powers of both the initial and final photon momentum. Th
allowed us to determine more terms than in@14#, where only
the leading terms in the final momentum were concerned.
the other hand, by expanding in both momenta, the range
applicability is smaller sinceboth kinematical variables
should be small.

We then considered different commonly used methods
include the on-shell information contained in the electroma
netic form factors in a ‘‘Born-term’’ calculation of the VCS
matrix element. The fact that the ‘‘Born terms’’ calculate
with F1 andF2 are gauge invariant is not trivial, since th
vertex and free propagator do not satisfy the Ward-Takaha
identity. We explained why different on-shell equivalen
forms for the electromagnetic vertex operator lead to t
sameirregular contribution in the VCS matrix element. We
emphasized the importance of stating with respect to wh
pole terms the structure-dependent terms are defined.

Using only gauge invariance, Lorentz invariance, crossi
symmetry, and the discrete symmetries, we were able
make statements about the low-energy behavior up
O(2). Further conclusions can be reached by also taking in
account the constraints imposed by chiral symmetry. T
would most naturally be done in the framework of chira
perturbation theory. In particular, predictions for the highe
order terms could be obtained.
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APPENDIX

In this appendix we outline the calculation of the tran
verse and longitudinal functionsAi of Eqs.~3.14! and~3.15!,
respectively. For that purpose we splitMm into its contribu-
tions from classesA andB, Mm5MA

m1MB
m . If we introduce

F~2q8!5e” 8* S 11
k

2M
q” 8D ~A1!

for the vertex involving the final real photon, the contribu
tion of classA @see Eq.~3.4!# reads

MA
m5ū~pf ,sf !~F~2q8!SF~pi1q!Geff

m ~q!

1Geff
m ~q!SF~pi2q8!F~2q8!!u~pi ,si !, ~A2!
of
is

On
of

to
g-

d
e
shi
t
he

ich

ng
to
to
to
his
l
r-

e

r
nt

-
n

for
z.
ns
by

s-

-

whereGeff
m (q) is defined in Eq.~3.3!. Applying the Dirac

equation,MA
m can be written as

MA
m5ū~pf ,sf !F2S pf•e8*

s2M2 1
pi•e8*

u2M2DG eff
m ~q!1~11k!

3S e” 8* q” 8Geff
m ~q!

s2M2 1
Geff

m ~q!e” 8* q” 8

u2M2 D
2

k

M S pf•e8* q” 8Geff
m ~q!

s2M2 2
pi•e8*Geff

m ~q!q” 8

u2M2 D
1

k

2M
@e” 8*G eff

m ~q!1Geff
m ~q!e” 8* #Gu~pi ,si !, ~A3!

wheres5(pf1q8)2 andu5(pi2q8)2. Similarly, using Eqs.
~3.10! and ~3.11!, MB

m can be written as

MB
m5ū~pf ,sf !~~e8* mq•q82q8me8* •q! f 1~P

2!

1~e8* mP•qP•q81Pme8* •Pq•q8

2Pme8* •qP•q82q8me8* •PP•q! f 2~P
2!

2 i emrnae8n* qrqa8g5f 3~P
2!1O~3!!u~pi ,si !,

~A4!

whereO(3) denotes terms of order 3 inq or q8.
The following considerations will be carried out in the

center-of-mass~c.m.! frame, where the four-momenta ar
given by qm5(q0,0,0,uqW u), pi

m5(Eq ,2qW ), q8m5(uqW 8u,qW 8),

and pf
m5(Eq8,2qW 8). From energy conservation,

q01Eq5uqW 8u1Eq8, we infer that we may chooseuqW u, uqW 8u,
and z5q̂•q̂8 as a set of independent variables. In terms
the c.m. variables the denominators of Eq.~A3! are propor-
tional to uqW 8u,

s2M252uqW 8u~Eq81uqW 8u!, u2M2522uqW 8u~Eq1zuqW u!,
~A5!

and thusMA
m can be written as

MA
m5

am~q,q8!

uqW 8u
1bm~q,q8!. ~A6!

The functionsam(q,q8) and bm(q,q8) are regular with re-
spect touqW 8u and uqW u, and are given by

am~q,q8!5K~qW !ū~2qW 8,sf !G eff
m ~q!u~2qW ,si !, ~A7!

bm~q,q8!5ū~2qW 8,sf !S ~11k!S e” 8* n” 8Geff
m ~q!

2~Eq81uqW 8u!

2
Geff

m ~q!e” 8* n” 8

2~Eq1zuqW u!
D 2k

qW •eW8*

M

Geff
m ~q!n” 8

2~Eq1zuqW u!

1
k

2M
@e” 8*G eff

m ~q!1Geff
m ~q!e” 8* # D u~2qW ,si !,

~A8!
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TABLE IV. Reduction of the coefficientsaW i j of Eqs.~A17!–~A20! to Pauli space. For the definition of the
corresponding Pauli spin operators see Eqs.~3.14! and~3.15!. For further information see caption of Table I.

aW 00(Q)/uqW 8u aW 11uqW u aW 21uqW 8uuqW u aW 12uqW u2

A1 0 z

2M2 uqW u 2
zk

4M3 uqW 8uuqW u 2
z2

2M3 uqW u2

A2 0 0 0 0

A3 0 2
1

2M2 uqW u
k

4M3 uqW 8uuqW u
z

2M3 uqW u2

A4 0 0 0 0

A5 2
NiGM~Q2!

~Ei1zuqWu!~Ei1M!

uqWu2

uqW8u
0 0 2

k

4M3 uqW u2

A6 0 0 0 0

A7 0 1
2M2 uqW u 2

k

4M3 uqW 8uuqW u 2
z

2M3 uqW u2

A8 0 0 0 0

A9
NiGE~Q

2!

~Ei1zuqWu!~Ei1M!

uqWu2

uqW8u
z

2M2 uqW u 2
zk

4M3 uqW 8uuqW u 2
z2

2M3 uqW u21
r E
2

6M
uqW u2

A10 0 1
2M2 uqW u 2

k

4M3 uqW 8uuqW u 2
z

2M3 uqW u2

A11 0 0 0 0

A12 0 0 0 0
y,

he
where we introducedn8m5(1,q̂8), and

K~qW !52
qW •eW8*

Eq1zuqW u
. ~A9!

In order to obtain Eq.~A9! we explicitly made use of the
Coulomb gauge for the final photon, namely, when usin
pf•e8*50 andpi•e8*5qW •eW8* .

We will now derive from Eqs.~A6!–~A9! the expansion
of MA

m in powers ofuqW u and uqW 8u. According to Eq.~3.13! it
is sufficient to treat the space components ofMm. Since the
structure coefficients appear atO(qq8) and higher in the
operator, we expand the contributions up to and includin
uqW 8u2, uqW 8uuqW u, anduqW u2. When expanding the electromagnetic
vertex we make use of the following relations:

qm5Qm1uqW 8ugm01•••,

q”5Q” 1uqW 8ug01•••,

q25Q212Q0uqW 8u1•••, ~A10!

where Qm5qmuqW 8505(M2Ei ,qW ). Furthermore, foraW we
need the expansion of the form factors aroundQ2:

F1,2~q
2!5F1,2~Q

2!12Q0uqW 8uF1,28 ~Q2!1•••, ~A11!

with the notationF8(x)5dF/dx. Using the definition of
Geff

m (q) of Eq. ~3.3!, it is straightforward to obtain

GW eff~q!5GW 001GW 10uqW 8u1GW 01uqW u1•••, ~A12!
g

g

where

GW 005gW , GW 1052
k

4M
@gW ,g0#, GW 015

k

4M
@gW ,gW •q̂#,

GW 205F18~0!gW 2
k

8M2 @gW ,g0#, GW 1152q̂g0F18~0!,

GW 025~2gW 1gW •q̂q̂!F18~0!1
k

8M2 @gW ,g0#,•••. ~A13!

Since the dependence on the momentaqW andqW 8 is also con-
tained in the initial and final nucleon spinors, respectivel
we expand them to the required order:

u~2qW !5S 11
gW •qW

2M
1

uqW u2

8M2 1••• D u~0!,

ū~2qW 8!5ū~0!S 11
gW •qW 8

2M
1

uqW 8u2

8M2 1••• D , ~A14!

where from now on we suppress the spin indices. Finally, t
expansion of the energy denominators reads

1

Eq81uqW 8u
5

1

M
2

uqW 8u
M2 1

uqW 8u2

2M3 1•••,

1

Eq1zuqW u
5

1

M
2
zuqW u
M2 1

~2z221!uqW u2

2M3 1•••. ~A15!



54 917VIRTUAL COMPTON SCATTERING OFF THE NUCLEON . . .
TABLE V. Reduction of the coefficientsbW i j of Eqs.~A23!–~A28! to Pauli space. See captions of Tables
I and IV.

bW 00 bW10uqW 8u bW 01uqW u bW 20uqW 8u2 bW 11uqW 8uuqW u bW 02uqW u2

A1 2
1
M

0
z

2M2 uqWu 2S 1

8M31
rE
2

6M
2

k

4M3DuqW8u2
zk

4M3 uqW8uuqWu S 1

8M31
rE
2

6M
2

z2

2M3

1
k~11k!

4M3 DuqWu2

A2 0
112k

2M2 uqW8u 0 2
k2

4M3 uqW8u2
zk

2M3 uqW8uuqWu 2
~11k!2

4M3 uqWu2

A3 0 0 2
1

2M2 uqWu 0
12k

4M3 uqW8uuqWu
~122k2k2!z

4M3 uqWu2

A4 0 0 2
~11k!2

2M2 uqWu 0 2
~21k!k

4M3 uqW8uuqWu
~11k!2z

4M3 uqWu2

A5 0 0 0 0 0
~21k!k

4M3 uqWu2

A6 0
11k

2M2 uqW8u 0 2
~11k!k

4M3 uqW8u2 2
~11k!z

2M3 uqW8uuqWu 0

A7 0 0 2
1

2M2 uqWu 0 2
112k

4M3 uqW8uuqWu z

2M3 uqW u2

A8 0 0 0 0
113k

4M3 uqW8uuqWu 0

A9 2
1
M

0
z

2M2 uqWu 2S 1

8M31
rE
2

6M
2

k

4M3DuqW8u2
zk

4M3 uqW8uuqWu S 1

8M32
z2

2M3DuqWu2

A10 0 0 2
1

2M2 uqWu 0 2
112k

4M3 uqW8uuqWu
z

2M3 uqWu2

A11 0 2
112k

2M2 uqW8u 0
k2

4M3 uqW8u2
~11k!z

4M3 uqW8uuqWu
112k

4M3 uqWu2

A12 0 (11k)z
2M2 uqW 8u 0 2

(11k)kz
4M3 uqW 8u2 2

(11k)(2z221)
4M3 uqW 8uuqW u 2

(11k)z
4M3 uqW u2
-

Let us first consideraW (q,q8) which we expand according
to

aW ~q,q8!5aW 00~Q!1uqW 8uaW 101uqW 8u2aW 201uqW 8uuqW uaW 11

1uqW 8u3aW 301uqW 8u2uqW uaW 211uqW 8uuqW u2aW 121•••.

~A16!

Using the relations of Eqs.~A10!–~A15! we obtain

aW 00~Q!5K~qW !ū~0!GW eff~Q!u~2qW !, ~A17!

aW 1152
q̂•eW8*

M
ū~0!S gW •q̂8

2M
GW 001GW 10D u~0!, ~A18!

aW 2152
q̂•eW8*

M
ū~0!S 1

8M2GW 001
gW •q̂8

2M
GW 101GW 20D u~0!,

~A19!

aW 1252
q̂•eW8*

M
ū~0!F2

z

M
S gW •q̂8

2M
GW 001GW 10D 1

gW •q̂8

2M
GW 01

~A20!
1GW 111S gW •q̂8

2M
GW 001GW 10D gW •q̂

2M
Gu~0!,

aW j050, j51,2, . . . . ~A21!

The last equation follows fromK(0)50. The function
aW 00(Q) is completely determined in terms of the electromag
netic form factorsF1,2(Q

2) @or GE,M(Q
2)#. Note that in Eq.

~A17! we keep all powers inuqW u, since it will be multiplied
with the 1/uqW 8u singularity and there are no other terms which
can generate such a singularity.

In order to determinebW (q,q8), we first expandbW (q,q8) in
an analogous fashion to Eq.~A16!

bW ~q,q8!5bW 001uqW 8ubW 101uqW ubW 011uqW 8u2bW 20

1uqW 8uuqW ubW 111uqW u2bW 021•••. ~A22!

Using the building blocks of Eqs.~A10!–~A15! we find for
the coefficientsbW i j :
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bW 005
1

2M
ū~0!~~11k!@e” 8* n” 8,GW 00#1k$e” 8* /,GW 00%!u~0!5

1

2M
ū~0!Xu~0!, ~A23!

bW 105
1

2M
ū~0!F ~11k!S @e” 8* n” 8,GW 10#2

1

M
e” 8* n” 8GW 00D 1k$e” 8* ,GW 10%1

gW •q̂8

2M
XGu~0!5

1

2M
ū~0!S Y1

gW •q̂8

2M
XD u~0!,

~A24!

bW 015
1

2M
ū~0!F ~11k!S @e” 8* n” 8,GW 01#1

z

M
GW 00e” 8* n” 8D 2

k

M
eW8* •q̂GW 00n” 81k$e” 8* ,GW 01%1X

gW •q̂

2M
Gu~0!

5
1

2M
ū~0!S Z1X

gW •q̂

2M
D u~0!, ~A25!

bW 205
1

2M
ū~0!F ~11k!S @e” 8* n” 8,GW 20#2

1

M
e” 8* n” 8GW 101

1

2M2 e” 8* n” 8GW 00D 1k$e” 8* n” ,GW 20%1
gW •q̂8

2M
Y1

1

8M2XGu~0!, ~A26!

bW 115
1

2M
ū~0!F ~11k!S @e” 8* n” 8,GW 11#2

1

M
e” 8* n” 8GW 011

z

M
GW 10e” 8* n” 8D 2

k

M
eW8* •q̂GW 10n” 81k$e” 8* ,GW 11%

1Y
gW •q̂

2M
1

gW •q̂8

2M
Z1

gW •q̂8

2M
X

gW •q̂

2M
Gu~0!, ~A27!

bW 025
1

2M
ū~0!F ~11k!S @e” 8* n” 8,GW 02#1

z

M
GW 01e” 8* n” 81

122z2

2M2 GW 00e” 8* n” 8D 2
k

M
eW8* •q̂S GW 012

z

M
GW 00D n” 8

1k$e” 8* ,GW 02%1Z
gW •q̂

2M
1

1

8M2XGu~0!. ~A28!

The reduction of the above expression to Pauli space is straightforward but very tedious. The results are displayed in
IV and V.

Finally, it is straightforward to obtain the expansion ofMW B :

MW B5ū~0!S uqW 8u2eW8*
ā

e2
1uqW 8uuqW u~zeW8*2q̂•eW8* q̂8!

b̄

e2
1O~3! D u~0!, ~A29!

where we have defined the~real! Compton polarizabilities as

ā5e2@ f 1~4M
2!14M2f 2~4M

2!#, b̄52e2f 1~4M
2!. ~A30!

Due to the presence of theg5 matrix, the third functionf 3(4M
2) only contributes atO(3) at the level of the matrix element.
.
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