514 research outputs found

    Conformal Field Theory Correlators from Classical Scalar Field Theory on AdSd+1AdS_{d+1}

    Get PDF
    We use the correspondence between scalar field theory on AdSd+1AdS_{d+1} and a conformal field theory on RdR^d to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.Comment: 9 pages, LaTeX2e with amsmath, amsfonts packages, section 2 rewritten, references adde

    Conformal Field Theory Correlators from Classical Field Theory on Anti-de Sitter Space II. Vector and Spinor Fields

    Get PDF
    We use the AdS/CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.Comment: 14 pages, LaTeX2e with amsmath,amsfonts packages; v2:interactions section corrected, reference adde

    Four-Fermi Effective Operators in Top-Quark Production and Decay

    Get PDF
    Effects of four-Fermi-type new interactions are studied in top-quark pair production and their subsequent decays at future e^+e^- colliders. Secondary-lepton-energy distributions are calculated for arbitrary longitudinal beam polarizations. An optimal-observables procedure is applied for the determination of new parameters.Comment: Polarized e^- plus unpolarized e^+ collisions were include

    Probing Top-Quark Couplings at Polarized NLC

    Get PDF
    The energy spectrum of the lepton(s) in e^+e^- --> tt-bar --> l^{+-} ...../l^+l^-..... at next linear colliders (NLC) is studied for arbitrary longitudinal beam polarizations as a possible test of new physics in top-quark couplings. The most general non-standard couplings for gamma-tt-bar, Ztt-bar and Wtb vertices are considered. Expected precision of the non-standard-parameter determination is estimated applying the optimal-observable procedure.Comment: Final version, To appear in Phys. Rev.

    Global Study of Electron-Quark Contact Interactions

    Get PDF
    We perform a global fit of data relevant to eeqqeeqq contact interactions, including deep inelastic scattering at high Q2Q^2 from ZEUS and H1, atomic physics parity violation in Cesium from JILA, polarized ee^- on nuclei scattering experiments at SLAC, Mainz and Bates, Drell-Yan production at the Tevatron, the total hadronic cross section σhad\sigma_{had} at LEP, and neutrino-nucleon scattering from CCFR. With only the new HERA data, the presence of contact interactions improves the fit compared to the Standard Model. When other data sets are included, the size of the contact contributions is reduced and the overall fit represents no real improvement over the Standard Model.Comment: 26 pages (now single-spaced), Revtex, 2 eps figures, uses epsf.sty. Some clarifications, minor corrections, 2 new references, also 3 new tables which present 95% CL bounds on the contact interaction scales Lambd

    On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes

    Get PDF
    This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for decades in statistical Pattern Recognition (PR) applications, and have numerous applications because of their known error bounds. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a priori target classes (values) of selected neighbors to, for example, predict the target class of the tested sample. Recently, an implementation of the k-NN, named as the Locally Linear Reconstruction (LLR) [11], has been proposed. The salient feature of the latter is that by invoking a quadratic optimization process, it is capable of systematically setting model parameters, such as the number of neighbors (specified by the parameter, k) and the weights. However, the LLR takes more time than other conventional methods when it has to be applied to classification tasks. To overcome this problem, we propose a strategy of using a PRS to efficiently compute the optimization problem. In this paper, we demonstrate, first of all, that by completely discarding the points not included by the PRS, we can obtain a reduced set of sample points, using which, in turn, the quadratic optimization problem can be computed far more expediently. The values of the corresponding indices are comparable to those obtained with the original training set (i.e., the one which considers all the data points) even though the computations required to obtain the prototypes and the corresponding classification accuracies are noticeably less. The proposed method has been tested on artificial and real-life data sets, and the results obtained are very promising, and has potential in PR applications

    Scattering in Anti-de Sitter Space and Operator Product Expansion

    Get PDF
    We develop a formalism to evaluate generic scalar exchange diagrams in AdS_{d+1} relevant for the calculation of four-point functions in AdS/CFT correspondence. The result may be written as an infinite power series of functions of cross-ratios. Logarithmic singularities appear in all orders whenever the dimensions of involved operators satisfy certain relations. We show that the AdS_{d+1} amplitude can be written in a form recognisable as the conformal partial wave expansion of a four-point function in CFT_{d} and identify the spectrum of intermediate operators. We find that, in addition to the contribution of the scalar operator associated with the exchanged field in the AdS diagram, there are also contributions of some other operators which may possibly be identified with two-particle bound states in AdS. The CFT interpretation also provides a useful way to ``regularize'' the logarithms appearing in AdS amplitude.Comment: 39 pages, using harvmac and epsf, eight figures; discussion in coinciding pole cases expanded, references added, misprints correcte

    Top quark tensor couplings

    Get PDF
    We compute the real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbWtbW vertex in the Standard Model (SM). For both tensorial couplings we find that the real part of the electroweak SM correction is close to 10% of the leading contribution given by the QCD gluon exchange. We also find that the electroweak real and imaginary parts for the anomalous right coupling are almost of the same order of magnitude. The one loop SM prediction for the real part of the left coupling is close to the 3σ\sigma discovery limit derived from bsγb\rightarrow s \gamma. Besides, taking into account that the predictions of new physics interactions are also at the level of a few percents when compared with the one loop QCD gluon exchange, these electroweak corrections should be taken into account in order to disentangle new physics effects from the standard ones. These anomalous tensorial couplings of the top quark will be investigated at the LHC in the near future where sensitivity to these contributions may be achieved.Comment: 16 pages, 2 figure

    Statistical Mechanics of Soft Margin Classifiers

    Full text link
    We study the typical learning properties of the recently introduced Soft Margin Classifiers (SMCs), learning realizable and unrealizable tasks, with the tools of Statistical Mechanics. We derive analytically the behaviour of the learning curves in the regime of very large training sets. We obtain exponential and power laws for the decay of the generalization error towards the asymptotic value, depending on the task and on general characteristics of the distribution of stabilities of the patterns to be learned. The optimal learning curves of the SMCs, which give the minimal generalization error, are obtained by tuning the coefficient controlling the trade-off between the error and the regularization terms in the cost function. If the task is realizable by the SMC, the optimal performance is better than that of a hard margin Support Vector Machine and is very close to that of a Bayesian classifier.Comment: 26 pages, 12 figures, submitted to Physical Review

    Analysis of nanopore detector measurements using Machine-Learning methods, with application to single-molecule kinetic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A nanopore detector has a nanometer-scale trans-membrane channel across which a potential difference is established, resulting in an ionic current through the channel in the pA-nA range. A distinctive channel current blockade signal is created as individually "captured" DNA molecules interact with the channel and modulate the channel's ionic current. The nanopore detector is sensitive enough that nearly identical DNA molecules can be classified with very high accuracy using machine learning techniques such as Hidden Markov Models (HMMs) and Support Vector Machines (SVMs).</p> <p>Results</p> <p>A non-standard implementation of an HMM, emission inversion, is used for improved classification. Additional features are considered for the feature vector employed by the SVM for classification as well: The addition of a single feature representing spike density is shown to notably improve classification results. Another, much larger, feature set expansion was studied (2500 additional features instead of 1), deriving from including all the HMM's transition probabilities. The expanded features can introduce redundant, noisy information (as well as diagnostic information) into the current feature set, and thus degrade classification performance. A hybrid Adaptive Boosting approach was used for feature selection to alleviate this problem.</p> <p>Conclusion</p> <p>The methods shown here, for more informed feature extraction, improve both classification and provide biologists and chemists with tools for obtaining a better understanding of the kinetic properties of molecules of interest.</p
    corecore