14,286 research outputs found

    Private-Public Sector Cooperation in Combating Cybercrime: in Search of a Model

    Full text link
    Turnover taxes are generally considered to be risk-free from the tax competition point of view, forthey are levied exclusively at the place of consumption. The Value-Added Tax (VAT) imposed by all EuropeanUnion (EU) member states, though, has become a source of distortion in the trans-Atlantic trade: non-EUsuppliers of electronic services were not required to collect the VAT, while their EU competitors were. The levelplaying field in EU’s foreign trade in electronic services was restored in 2002 by the so-called e-VAT Directivethat obliged non-EU providers of electronic services to charge the VAT at the rate of the member state theirconsumer resides in. This paper argues that besides being largely unenforceable, the Directive has createdanother misbalance in the infra-EU electronic commerce. It is being demonstrated that since the Directive is notapplicable to EU vendors, non-EU businesses can and do circumvent it by establishing daughter companies inEU jurisdictions with the lowest VAT rates and thus spur the infra-EU tax competition

    Raman modes of the deformed single-wall carbon nanotubes

    Full text link
    With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by \textit{ab initio} method. It is found that both the frequencies and the intensities of the low-frequency Raman active modes almost do not change in the deformed nanotubes, while their high-frequency part shifts obviously. Especially, the high-frequency part shifts linearly with the uniaxial tensile strain, and two kinds of different shift slopes are found for any kind of SWCNTs. More interestingly, new Raman peaks are found in the nonresonant Raman spectra under torsional strain, which are explained by a) the symmetry breaking and b) the effect of bond rotation and the anisotropy of the polarizability induced by bond stretching

    Experimental and numerical study of error fields in the CNT stellarator

    Full text link
    Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts (but not the deformations, yet) of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and phosphor rod, and were computed by means of a Biot-Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton-Raphson algorithm searches for the coils' displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm's ability to deduce the coils' displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved quantitative and qualitative agreement with experimental results.Comment: Special Issue on the 20th International Stellarator-Heliotron Worksho

    Enhancing the Mass Sensitivity of Graphene Nanoresonators Via Nonlinear Oscillations: The Effective Strain Mechanism

    Full text link
    We perform classical molecular dynamics simulations to investigate the enhancement of the mass sensitivity and resonant frequency of graphene nanomechanical resonators that is achieved by driving them into the nonlinear oscillation regime. The mass sensitivity as measured by the resonant frequency shift is found to triple if the actuation energy is about 2.5 times the initial kinetic energy of the nanoresonator. The mechanism underlying the enhanced mass sensitivity is found to be the effective strain that is induced in the nanoresonator due to the nonlinear oscillations, where we obtain an analytic relationship between the induced effective strain and the actuation energy that is applied to the graphene nanoresonator. An important implication of this work is that there is no need for experimentalists to apply tensile strain to the resonators before actuation in order to enhance the mass sensitivity. Instead, enhanced mass sensitivity can be obtained by the far simpler technique of actuating nonlinear oscillations of an existing graphene nanoresonator.Comment: published versio

    Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes

    Get PDF
    Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive

    Thermal diffusion by Brownian motion induced fluid stress

    Full text link
    The Ludwig-Soret effect, the migration of a species due to a temperature gradient, has been extensively studied without a complete picture of its cause emerging. Here we investigate the dynamics of DNA and spherical particles sub jected to a thermal gradient using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the DNA molecules will migrate to colder regions of the channel, an observation also made in the experiments of Duhr, et al[1]. In fact, the thermal diffusion coefficient found agrees quantitatively with the experimental value. We also observe that the thermal diffusion coefficient decreases as the radius of the studied spherical particles increases. Furthermore, we observe that the thermal fluctuations-fluid momentum flux coupling induces a gradient in the stress which leads to thermal migration in both systems.Comment: 6 pages, 5 figue

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of ∼\sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed
    • …
    corecore