196 research outputs found

    The flow field of the upper hypoxic Eastern Tropical North Atlantic oxygen minimum zone

    Get PDF
    A subsurface low oxygen zone is located in the eastern tropical North Atlantic Ocean (ETNA) in the upper ocean with the core of the hypoxic (O2 ≀ 60 ÎŒmol kg−1) oxygen minimum zone (OMZ) at 400 to 500 m depth. The poorly known subsurface circulation in the OMZ region is derived from observations and data assimilation results. Measurements in the eastern tropical North Atlantic in November/December 2008, in November/December 2009 and October/November 2010 of velocity, oxygen and of a tracer (CF3SF5) that was released in April 2008 at ∌ 8° N, 23° W (at ∌ 330 m depth) show circulation in the upper part of the OMZ with spreading to the east in the North Equatorial Countercurrent (NECC) region and northwestward around the Guinea Dome. Three floats equipped with oxygen sensors deployed at ∌ 8° N, 23° W with parking depths at 330, 350 and 400 m depths were used to estimate velocity along the float trajectory at the surface and at the park depth. South of 9° N, the zonal surface velocity estimate from float data alternate seasonally. At the 350 m park depth north of 9° N a cyclonic northwestward flow across the OMZ was observed. The northward shift into the upper OMZ and the cyclonic flow around the Guinea Dome seem to be connected to a strong Atlantic Meridional Mode (AMM) event in 2009. A near-surface cyclonic circulation cell east of the Cape Verde Islands expands into the OMZ layer. The circulation of the upper OMZ mirrors the near surface circulation. Oxygen measurements from the cruises used here, as well as other recent cruises up to the year 2014 confirm the continuous deoxygenation trend in the upper OMZ since the 1960's near the Guinea Dome. The three floats deployed with the tracer show spreading paths consistent with the overall observed tracer spreading. Mesoscale eddies may modify the oxygen distribution in the OMZs. Oxygen sensors on the floats remained well calibrated for more than 20 months and so the oxygen profiles can be used to investigate mesoscale eddy signatures. However, in general eddies are less energetic in the ETNA south of the Cape Verde Islands compared to similar latitudes in the Eastern Tropical South Pacific

    Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B

    Get PDF
    The results of five years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about 20 * 20 cm2 each. The detector is based on microstrip gas counters (MSGCs) with diamond like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000.Comment: 29 pages, 22 figure

    Mapping interactions between the sustainable development goals: lessons learned and ways forward

    Get PDF
    Pursuing integrated research and decision-making to advance action on the sustainable development goals (SDGs) fundamentally depends on understanding interactions between the SDGs, both negative ones (“trade-offs”) and positive ones (“co-benefits”). This quest, triggered by the 2030 Agenda, has however pointed to a gap in current research and policy analysis regarding how to think systematically about interactions across the SDGs. This paper synthesizes experiences and insights from the application of a new conceptual framework for mapping and assessing SDG interactions using a defined typology and characterization approach. Drawing on results from a major international research study applied to the SDGs on health, energy and the ocean, it analyses how interactions depend on key factors such as geographical context, resource endowments, time horizon and governance. The paper discusses the future potential, barriers and opportunities for applying the approach in scientific research, in policy making and in bridging the two through a global SDG Interactions Knowledge Platform as a key mechanism for assembling, systematizing and aggregating knowledge on interactions

    A seasonal cycle in the export of bottom water from the Weddell Sea

    Get PDF
    Dense water formed over the Antarctic continental shelf rapidly descends into the deep ocean where it spreads throughout the global ocean as Antarctic Bottom Water1, 2. The coldest and most voluminous component of this water mass is Weddell Sea bottom water1, 3, 4, 5, 6, 7. Here we present observations over eight years of the temperature and salinity stratification in the lowermost ocean southeast of the South Orkney Islands, marking the export of Weddell Sea bottom water. We observe a pronounced seasonal cycle in bottom temperatures, with a cold pulse in May/June and a warm one in October/November, but the timing of these phases varies each year. We detect the coldest bottom water in 1999 and 2002, whereas there was no cold phase in 2000. On the basis of current velocities and water mass characteristics, we infer that the pulses originate from the southwest Weddell Sea. We propose that the seasonal fluctuations of Weddell Sea bottom-water properties are governed by the seasonal cycle of the winds over the western margin of the Weddell Sea. Interannual fluctuations are linked to the variability of the wind-driven Weddell Sea gyre and hence to large-scale climate phenomena such as the Southern Annular Mode and El Niño/Southern Oscillation

    Spectroscopic investigation of the deeply buried Cu In,Ga S,Se 2 Mo interface in thin film solar cells

    Get PDF
    The Cu In,Ga S,Se 2 Mo interface in thin film solar cells has been investigated by surface sensitive photoelectron spectroscopy, bulk sensitive X ray emission spectroscopy, and atomic force microscopy. It is possible to access this deeply buried interface by using a suitable lift off technique, which allows to investigate the back side of the absorber layer as well as the front side of the Mo back contact. We find a layer of Mo S,Se 2 on the surface of the Mo back contact and a copper poor stoichiometry at the back side of the Cu In,Ga S,Se 2 absorber. Furthermore, we observe that the Na content at the Cu In,Ga S,Se 2 Mo interface as well as at the inner grain boundaries in the back contact region is significantly lower than at the absorber front surfac

    Cooling and ventilating the abyssal ocean

    Get PDF
    The abyssal ocean is filled with cold, dense waters that sink along the Antarctic continental slope and overflow sills that lie south of the Nordic Seas. Recent integrations of chlorofluorocarbon‐11 (CFC) measurements are similar in Antarctic Bottom Water (AABW) and in lower North Atlantic Deep Water (NADW), but Antarctic inputs are ≈ 2°C colder than their northern counterparts. This indicates comparable ventilation rates from both polar regions, and accounts for the Southern Ocean dominance over abyssal cooling. The decadal CFC‐based estimates of recent ventilation are consistent with other hydrographic observations and with longer‐term radiocarbon data, but not with hypotheses of a 20th‐century slowdown in the rate of AABW formation. Significant variability is not precluded by the available ocean measurements, however, and interannual to decadal changes are increasingly evident at high latitudes
    • 

    corecore