719 research outputs found
Expiratory muscle fatigue impairs exercise performance
High-intensity, exhaustive exercise may lead to inspiratory as well as expiratory muscle fatigue (EMF). Induction of inspiratory muscle fatigue (IMF) before exercise has been shown to impair subsequent exercise performance. The purpose of the present study was to determine whether induction of EMF also affects subsequent exercise performance. Twelve healthy young men performed five 12-min running tests on a 400-m track on separate days: a preliminary trial, two trials after induction of EMF, and two trials without prior muscle fatigue. Tests with and without prior EMF were performed in an alternate order, randomly starting with either type. EMF was defined as a ≥20% drop in maximal expiratory mouth pressure achieved during expiratory resistive breathing against 50% maximal expiratory mouth pressure. The average distance covered in 12min was significantly smaller during exercise with prior EMF compared to control exercise (2872±256 vs. 2957±325m; P=0.002). Running speed was consistently lower (0.13ms−1) throughout the entire 12min of exercise with prior EMF. A significant correlation was observed between the level of EMF (decrement in maximal expiratory mouth pressure after resistive breathing) and the reduction in running distance (r 2=0.528, P=0.007). Perceived respiratory exertion was higher during the first 800m and heart rate was lower throughout the entire test of running with prior EMF compared to control exercise (5.3±1.6 vs. 4.5±1.7 points, P=0.002; 173±10 vs. 178±7beatsmin−1, P=0.005). We conclude that EMF impairs exercise performance as previously reported for IM
Partially gapped fermions in 2D
We compute mean field phase diagrams of two closely related interacting
fermion models in two spatial dimensions (2D). The first is the so-called 2D
t-t'-V model describing spinless fermions on a square lattice with local
hopping and density-density interactions. The second is the so-called 2D
Luttinger model that provides an effective description of the 2D t-t'-V model
and in which parts of the fermion degrees of freedom are treated exactly by
bosonization. In mean field theory, both models have a charge-density-wave
(CDW) instability making them gapped at half-filling. The 2D t-t'-V model has a
significant parameter regime away from half-filling where neither the CDW nor
the normal state are thermodynamically stable. We show that the 2D Luttinger
model allows to obtain more detailed information about this mixed region. In
particular, we find in the 2D Luttinger model a partially gapped phase that, as
we argue, can be described by an exactly solvable model.Comment: v1: 36 pages, 10 figures, v2: minor corrections; equation references
to arXiv:0903.0055 updated
Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors
The consequences of disordered charge stripes and antiphase spin domains for
the properties of the high-temperature superconductors are studied. We focus on
angle-resolved photoemission spectroscopy and optical conductivity, and show
that the many unusual features of the experimentally observed spectra can be
understood naturally in this way. This interpretation of the data, when
combined with evidence from neutron scattering and NMR, suggests that
disordered and fluctuating stripe phases are a common feature of
high-temperature superconductors.Comment: 4 pages, figures by fax or mai
Propagation of social representations
Based on a minimal formalism of social representations as a set of associated cognems, a simple model of propagation of representations is presented. Assuming that subjects share the constitutive cognems, the model proposes that mere focused attention on the set of cognems in the field of common conscience may replicate the pattern of representation from context into subjects, or, from subject to subject, through actualization by language, where cognems are represented by verbal signs. Limits of the model are discussed, and evolutionist perspectives are presented with the support of field data
Signatures of Stripe Phases in Hole Doped
We study nickelate-centered and oxygen-centered stripe phases in doped
LaNiO materials. We use an inhomogeneous Hartree-Fock and
random-phase approximation approach including both electron-electron and
electron-lattice(e-l) coupling for a layer of LaNiO. We find that
whether the ground state after commensurate hole doping comprises Ni-centered
or O-centered charge-localized stripes depends sensitively on the e-l
interaction. With increasing e-l interaction strength, a continuous transition
from an O-centered stripe phase to a Ni-centered one is found. Various low- and
high-energy signatures of these two kinds of stripe phases are predicted, which
can clearly distinguish them. These signatures reflect the strongly correlated
spin-charge-lattice features in the vicinity of Ni-centered or O-centered
stripe domains. The importance of e-l interaction for recent experiments on
stripe phases is discussed.Comment: 11 pages, 12 figures, to appear in Phys.Rev.B(July 1,1998
Structural Disorder Induced Polaron Formation and Magnetic Scattering in the Disordered Holstein-Double Exchange Model
In this paper we present results on the disordered Holstein-Double Exchange
model, explicitly in three dimension and `metallic' densities, obtained by
using a recently developed Monte Carlo approach. Following up on our earlier
paper, cond-mat/0406085, here we provide a detailed microscopic picture of the
thermally driven metal-insulator transition (MIT) that arises close to the
ferromagnet to paramagnet transition in this problem. This paper is focused
mainly on the `diagnostics', clarifying the origin of the effective disorder
that drives the MIT in this system. To that effect, we provide results on the
thermal evolution of the distributions of (i) lattice distortions, (ii) the net
`structural disorder' and (iii) the `hopping disorder' arising from spin
randomness feeding back through the Hunds coupling. We suggest a phenomenology
for the thermally driven MIT, viewing it as an `Anderson-Holstein' transition.Comment: 6 pages, latex, JPSJ style, 7 eps figs. Style files included.
Proceedings of the SPQS Meeting at Sendai, Japan, 2004. To appear in JPS
Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method
It is well-known from unrestricted Hartree-Fock computations that the 2D
Hubbard model does not have homogeneous mean field states in significant
regions of parameter space away from half filling. This is incompatible with
standard mean field theory. We present a simple extension of the mean field
method that avoids this problem. As in standard mean field theory, we restrict
Hartree-Fock theory to simple translation invariant states describing
antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use
an improved method to implement the doping constraint allowing us to detect
when a phase separated state is energetically preferred, e.g. AF and F
coexisting at the same time. We find that such mixed phases occur in
significant parts of the phase diagrams, making them much richer than the ones
from standard mean field theory. Our results for the 2D t-t'-U Hubbard model
demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure
The interplay between double exchange, super-exchange, and Lifshitz localization in doped manganites
Considering the disorder caused in manganites by the substitution of Mn by Fe
or Ga, we accomplish a systematic study of doped manganites begun in previous
papers. To this end, a disordered model is formulated and solved using the
Variational Mean Field technique. The subtle interplay between double exchange,
super-exchange, and disorder causes similar effects on the dependence of T_C on
the percentage of Mn substitution in the cases considered. Yet, in
LaCaMnGaO our results suggest a quantum
critical point (QCP) for , associated to the localization of
the electronic states of the conduction band. In the case of
LaCaMnFeO (with ) no such QCP is expected.Comment: 6 pages + 3 postscript figures. Largely extended discussio
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
- …
