1,279 research outputs found
Quantum Walks with Entangled Coins
We present a mathematical formalism for the description of unrestricted
quantum walks with entangled coins and one walker. The numerical behaviour of
such walks is examined when using a Bell state as the initial coin state, two
different coin operators, two different shift operators, and one walker. We
compare and contrast the performance of these quantum walks with that of a
classical random walk consisting of one walker and two maximally correlated
coins as well as quantum walks with coins sharing different degrees of
entanglement.
We illustrate that the behaviour of our walk with entangled coins can be very
different in comparison to the usual quantum walk with a single coin. We also
demonstrate that simply by changing the shift operator, we can generate widely
different distributions. We also compare the behaviour of quantum walks with
maximally entangled coins with that of quantum walks with non-entangled coins.
Finally, we show that the use of different shift operators on 2 and 3 qubit
coins leads to different position probability distributions in 1 and 2
dimensional graphs.Comment: Two new sections and several changes from referees' comments. 12
pages and 12 (colour) figure
Exchange Narrowing Effects in the EPR Linewidth of Gd Diluted in Ce Compounds
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in
Ce compounds has been observed. In metals, the local magnetic moment EPR
linewidth, \Delta H, is expected to increase linearly with the temperature. In
contrast, in Ce_{x}La_{1-x}Os_{2} the Gd EPR spectra show a nonlinear increase.
In this work, the mechanisms that are responsible for the thermal behavior of
the EPR lines in Ce_{x}La_{1-x}Os_{2} are examined. We show that the exchange
interaction between the local magnetic moments and the conduction electrons are
responsible for the narrowing of the spectra at low temperatures. At high
temperatures, the contribution to the linewidth of the exchange interaction
between the local magnetic moments and the ions has an exponential
dependence on the excitation energy of the intermediate valent ions. A complete
fitting of the EPR spectra for powdered samples is obtained.Comment: 11 pages, 1 figur
Recommended from our members
Undocumented Mexican immigrants: An exploratory study of social workers\u27 perspectives on service delivery and implications for practice
Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite
We report electron spin resonance (ESR) measurements in the Gd3+ doped
semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x = 0.001). As the
temperature T varies from T = 150 K to T = 165 K, the Gd3+ ESR fine and
hyperfine structures coalesce into a broad inhomogeneous single resonance. At T
= 200 K the line narrows and as T increases further, the resonance becomes
homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest
that the origin of these features may be associated to a subtle interdependence
of thermally activated mechanisms that combine: i) an increase with T of the
density of activated conduction-carriers across the T-dependent semiconducting
pseudogap; ii) the Gd3+ Korringa relaxation process due to an exchange
interaction, J_{fd}S.s, between the Gd3+ localized magnetic moments and the
thermally activated conduction-carriers and; iii) a relatively weak confining
potential of the rare-earth ions inside the oversized (Fe2P3)4 cage, which
allows the rare-earths to become rattler Einstein oscillators above T = 148 K.
We argue that the rattling of the Gd3+ ions, via a motional narrowing
mechanism, also contributes to the coalescence of the ESR fine and hyperfine
structure.Comment: 7 pages, 9 figures, accepted for publication in Phys Rev
Nonlinear dynamics of coupled transverse-rotational waves in granular chains
The nonlinear dynamics of coupled waves in one-dimensional granular chains with and without a substrate
is theoretically studied accounting for quadratic nonlinearity. The multiple time scale method is used to derive
the nonlinear dispersion relations for infinite granular chains and to obtain the wave solutions for semiinfinite
systems. It is shown that the sum-frequency and difference-frequency components of the coupled
transverse-rotational waves are generated due to their nonlinear interactions with the longitudinal wave.
Nonlinear resonances are not present in the chain with no substrate where these frequency components have
low amplitudes and exhibit beating oscillations. In the chain positioned on a substrate two types of nonlinear
resonances are predicted. At resonance, the fundamental frequency wave amplitudes decrease and the
generated frequency component amplitudes increase along the chain, accompanied by the oscillations due to
the wave numbers asynchronism. The results confirm the possibility of a highly efficient energy transfer
between the waves of different frequencies, which could find applications in the design of acoustic devices
for energy transfer and energy rectification
Asymptotic entanglement in a two-dimensional quantum walk
The evolution operator of a discrete-time quantum walk involves a conditional
shift in position space which entangles the coin and position degrees of
freedom of the walker. After several steps, the coin-position entanglement
(CPE) converges to a well defined value which depends on the initial state. In
this work we provide an analytical method which allows for the exact
calculation of the asymptotic reduced density operator and the corresponding
CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the
von Neumann entropy of the reduced density operator as an entanglement measure.
The method is applied to the case of a Hadamard walk for which the dependence
of the resulting CPE on initial conditions is obtained. Initial states leading
to maximum or minimum CPE are identified and the relation between the coin or
position entanglement present in the initial state of the walker and the final
level of CPE is discussed. The CPE obtained from separable initial states
satisfies an additivity property in terms of CPE of the corresponding
one-dimensional cases. Non-local initial conditions are also considered and we
find that the extreme case of an initial uniform position distribution leads to
the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now
separated from specific examples. Most figures have been replaced by new
versions. The paper is now significantly reduced in size: 11 pages, 7 figure
Matching fields of a long superconducting film
We obtain the vortex configurations, the matching fields and the
magnetization of a superconducting film with a finite cross section. The
applied magnetic field is normal to this cross section, and we use London
theory to calculate many of its properties, such as the local magnetic field,
the free energy and the induction for the mixed state. Thus previous similar
theoretical works, done for an infinitely long superconducting film, are
recovered here, in the special limit of a very long cross section.Comment: Contains a REVTeX file and 4 figure
- …