758 research outputs found

    Unified models of the cosmological dark sector

    Full text link
    We model the cosmological substratum by a viscous fluid that is supposed to provide a unified description of the dark sector and pressureless baryonic matter. In the homogeneous and isotropic background the \textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q0≈−0.53q_{0} \approx - 0.53 of the deceleration parameter. Moreover, different from other approaches, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.Comment: 4 pages, 1 figure, submitted to the Proceedings of the Spanish Relativity Meeting - ERE 2010, Granada, September 6 - September 10, 201

    Dissipation of dark matter

    Full text link
    Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity ≲107\lesssim 10^7 Pa⋅\cdots, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, ≲10−3\lesssim 10^{-3} Pa⋅\cdots.Comment: 10 pages, 3 figures, published in PR

    Matter power spectrum for the generalized Chaplygin gas model: The relativistic case

    Full text link
    The generalized Chaplygin gas (GCG) model is the prototype of a unified model of dark energy (DE) and dark matter (DM). It is characterized by equation-of-state (EoS) parameters AA and α\alpha. We use a statistical analysis of the 2dFGRS data to constrain these parameters. In particular, we find that very small (close to zero) and very large values (α≫1\alpha\gg 1) of the equation-of-state parameter α\alpha are preferred. To test the validity of this type of unification of the dark sector we admit the existence of a separate DM component in addition to the Chaplygin gas and calculate the probability distribution for the fractional contributions of both components to the total energy density. This analysis favors a model for which the Universe is nearly entirely made up of the separate DM component with an almost negligible Chaplygin gas part. This confirms the results of a previous Newtonian analysis.Comment: Latex file, 8 pages, 15 figures in eps forma
    • …
    corecore