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Abstract Although general relativistic cosmological solu-
tions, even in the presence of pressure, can be mimicked by
using neo-Newtonian hydrodynamics, it is not clear whether
there exists the same Newtonian correspondence for spher-
ical static configurations. General relativity solutions for
stars are known as the Tolman–Oppenheimer–Volkoff (TOV)
equations. On the other hand, the Newtonian description does
not take into account the total pressure effects and there-
fore cannot be used in strong field regimes. We discuss how
to incorporate pressure in the stellar equilibrium equations
within the neo-Newtonian framework. We compare the New-
tonian, neo-Newtonian, and the full relativistic theory by
solving the equilibrium equations for both three approaches
and calculating the mass–radius diagrams for some simple
neutron stars’ equations of state.

1 Introduction

General relativity is the usual theory for dealing with gravi-
tational phenomena [1]. Its building blocks, like the equiva-
lence principle and predictions for the trajectories of planets
and light in the solar system, have passed the most different
tests. So far, we still do not have any clear evidence against
GR though there are, of course, many alternative theories,
like Brans–Dicke [2], f (R) [3] and others [4].

The application of GR to expanding backgrounds gives
rise to cosmological solutions. For expanding, homogeneous
and isotropic configurations we obtain from GR the well
know Friedmann equations for the evolution of the cosmo-
logical scalar factor a(t). These cosmological solutions were
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obtained in 1922, a few years after Einstein presented the GR
field equations.

A quite interesting fact is that in the 1930s Milne and
McCrea started to develop a Newtonian description for cos-
mology [5,6]. From their work, the so called Newtonian cos-
mology has appeared, from which one obtains the same rel-
ativistic solutions for matter dominated universes, i.e., New-
tonian cosmology matches GR for pressureless fluids.

With the works of Milne in the 1950s and Harrisson in
1965, pressure effects were correctly incorporated into New-
tonian cosmological solutions. This new approach became
famous as the neo-Newtonian cosmology and all the GR
Friedmann solutions could now be obtained [7,8]. There-
fore, via the neo-Newtonian formulation, cosmology can be
studied with a much simpler formalism than the full GR the-
ory.

Cosmology represents only one type of solutions which
can be obtained from gravitational relativistic theories. Black
holes configurations and gravitational waves are also exam-
ples of solutions. For static configurations GR is able to
describe the structure of objects like stars. The GR solutions
for isotropic stars are known as the Tolman–Oppeinheimer–
Volkoff (TOV) equations from which we can solve the equi-
librium configuration of the stellar interior [9,10].

In general, nuclear reactions within the stellar interior
induce energy flow via radiative convection. However, since
for compact stars the nuclear timescale is much larger than
the thermal and dynamical timescales one can assume the
hydrostatic equilibrium for most of the star lifetime. In a
first approximation, hydrostatic equilibrium in stars can be
studied with Newtonian mechanics. From this approach one
obtains the Lane–Emden equation [11] which is basically the
Newtonian limit of the TOV system when pressure does not
source gravitational effects in the stellar interior. Of course,
since the pressure effects, mainly in extreme relativistic stars,
are very important for the stellar properties, many systems in
nature cannot be described via the Newtonian equations. One
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important example is a neutron star. Hence, one may wonder:
Is it possible to reproduce the full TOV solutions using neo-
Newtonian hydrodynamics? In other words: Is there the same
equivalence between GR and the neo-Newtonian framework
for a static configuration? This is the main goal of this paper.
See also Refs. [12,13] for interesting related investigations.

In the next section we briefly review the neo-Newtonian
cosmology. This review will be useful to present the neo-
Newtonian hydrodynamics which will be important for the
rest of the paper. A crucial aspect of this discussion con-
cerns the equivalence principle which will also be addressed
here through the different possible definitions of mass. In
Sect. 3 we briefly review the Newtonian hydrostatic equilib-
rium equation and the Tolman–Oppenheimer–Volkoff (full
relativistic) equation for star. Then we propose the imple-
mentation of the neo-Newtonian hydrodynamics for stellar
configurations. We show in Sect. 4 numerical results for the
mass–radius diagram for neutron stars adopting well-known
equations of state (EoS) given in the literature. We conclude
in the final section.

2 Newtonian hydrodynamics in an expanding
background: cosmology

The purpose of this section is to present the neo-Newtonian
hydrodynamics applied to cosmology. However, let us start
with the standard case of Newtonian equations. The basic
equations of Newtonian hydrodynamics for an inviscid per-
fect fluid are the following:

ρ̇ + ∇ · (ρ�v) = 0, (1)

ρ
d�v
dt

≡ ρ[�̇v + (�v · ∇)�v] = −∇ p, (2)

where ρ is the fluid density, p its pressure, and �v its the
velocity field. The dot means derivative with respect to the
cosmic time t , i.e., ȧ = ∂t a.

The above system of equations becomes suitable to study
cosmology adopting the velocity field �v = H(t)�r (Hubble’s
law) where H(t) = ȧ(t)

a(t) , being a(t) the scale factor. It is
worth to note the trivial solution for the continuity equation
(1) ρ(a) = ρ0/a3, where today’s scale factor a0 = 1 gives
today’s density of the fluid ρ0.

Gravitational interaction is coupled to Euler’s equation (2)
as

�̇v + (�v · ∇)�v = −∇ p

ρ
− ∇�, (3)

where the gravitational potential � obeys the Poisson equa-
tion

∇2� = 4πGρ. (4)

Equations (1) and (3) provide a fluid picture of the cosmic
medium which is gravitationally self-interacting via the Pois-
son equation (4). In the Newtonian cosmology the Friedmann
equations read

ȧ2

a2 + (−2E)

a2 = 8πG

3
ρ and Ḣ + H2 = −4πG

3
ρ, (5)

where E is a constant of integration associated to the energy
of system. The pressure is not dynamically relevant for the
homogeneous and isotropic background. With Newtonian
cosmology it is not possible to model a radiation dominated
phase or even to study a late time dark energy dominated
epoch. This approach is restricted to a description of the
Einstein–de Sitter universe.

2.1 Including pressure: the neo-Newtonian cosmology

A simple way to include the pressure effects and, at the same
time, keep the simplicity of the Newtonian physics is the use
of the neo-Newtonian equations developed during the 1950s
by McCrea [7] and by Harrison in the 1960s [8]. Later, during
the 1990s, an important analysis concerning the perturbative
behavior of the neo-Newtonian equations has helped to set
the final form for the fluid equations in this approach [14]
(see also [15]). This set of equations reads

ρ̇ + ∇ · (ρ�v) + p∇ · �v = 0, (6)

�̇v + (�v · ∇)�v = −∇� − ∇ p

ρ + p
, (7)

∇2� = 4πG (ρ + 3p). (8)

Combining Eqs. (6), (7), and (8) one obtains equations for the
expansion of the homogeneous and isotropic background that
are exactly the same as the relativistic Friedmann equations,

ȧ2

a2 + (−2E)

a2 = 8πG

3
ρ, (9)

Ḣ + H2 = −4πG

3
(ρ + 3p). (10)

The main idea behind the neo-Newtonian formalism relies on
the following substitutions: firstly, it is necessary to redefine
the concept of inertial and passive-gravitational mass density.
With the redefinition

ρi → ρ + p, (11)

we rewrite the continuity and the Euler equation.
The second step is the interpretation of the active gravita-

tional mass density i.e., the density that sources the gravita-
tional field. Hence the following redefinition:

ρg → ρ + 3p, (12)

which is related to the trace of the energy-momentum tensor,
will become the source of the Poisson equation.
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3 Newtonian, relativistic, and neo-Newtonian
formulations for static configurations: stars

Very simple, spherically symmetric, and static geometries are
perfect for studying astrophysical objects like stars. In this
section we start reviewing the Newtonian and general rela-
tivistic formulations. They will be useful for a comparison
with the neo-Newtonian approach to stellar hydrodynamical
equilibrium we present at the end of the section.

The Newtonian hydrostatic equilibrium equations are
widely derived in the literature [1]. They read

dp

dr
= −GρM(r)

r2 , (13)

and

dM(r)

dr
= 4πr2ρ. (14)

In principle, the system (13, 14) can be solved numerically
since an appropriate EoS p ≡ p(ρ) is provided.

On the other hand, there is a similar set of equations when
general relativity is adopted. They are known as the Tolman–
Oppeinheimer–Volkoff (TOV) equation,

dp

dr
= −GρM(r)

r2

(
1 + p

ρ

) (
1 + 4πr3 p

M(r)

)
(

1 − 2G M(r)
r

) . (15)

Only with p � ρ, Eq. (13) cannot be obtained because of
the Schwartzschild-like correction in the denominator (15).
After restoring units the correct Newtonian limit occurs for
c → ∞.

The TOV equation is coupled to the mass definition

dM(r)

dr
= 4πr2ρ, (16)

which has the same form as its Newtonian counterpart (14).
Therefore, the full equilibrium configuration for stellar

systems is obtained by solving the system (15) sourced by
the differential relation (16).

Now we derive the neo-Newtonian correspondence for the
hydrostatic equilibrium condition. In addition to the modified
Poisson equation (8) one finds

1

ρi

dp

dr
= − G

r2

∫ r

0
4πr ′2(ρ + 3p)dr ′. (17)

Equation (17) with the proper neo-Newtonian identifica-
tions for inertial/passive-gravitational mass densities results
in

dp

dr
= −G(ρ + p)

r2 M̃(r), (18)

where one also uses the relation

dM̃(r)

dr
= 4πr2(ρ + 3p). (19)

Note that the above relation differs from the standard def-
inition for the mass of an object,

M =
∫ R

0
4πr2ρdr. (20)

Hence, Eqs. (18) and (19) represent the neo-Newtonian
version of the TOV system (16) and (15).

4 Numerical results

We will solve now the differential equations for the internal
structure of stars. Our goal is to compare the solution for
the Newtonian formulation (13) and (14); the full relativis-
tic TOV equations which is (15) sourced by the differential
relation (16) and the neo-Newtonian equations (18) and (19).

White dwarfs are objects in which the simple Newtonian
formalism works quite well. Therefore, the comparison we
propose here seems to be meaningless if using such Newto-
nian stars. On the other hand, neutron stars are perfect lab-
oratories for testing the relativistic corrections incorporated
by the TOV equations.

After specifying the EoS p(ρ) for the stellar interior, the
solution of the equilibrium equations will also depends on
specifying the central stellar pressure p(r = 0) = p0. Given
the p0 value one obtains the total mass and radius of the
star. Unfortunately the inner composition of neutron stars
are not well understood and the correct neutron star EoS is
still unknown. The typical densities found in such objects are
of order or greater than the nuclear saturation density where
the common way to obtain the EoS of nuclear matter is via
microscopic many-body calculations based on phenomeno-
logical relativistic mean-field theories and nucleon–nucleon
potentials. Usually, either variational or Monte-Carlo tech-
niques are used (see [16,17] for a review).

One possibility is that precise observations of spin rate,
mass, and radius of many different stars can lead to the recon-
struction of the neutron star properties, i.e., one could indi-
rectly obtain p(ρ). Remarkably, recent observations of very
massive neutron star, with mass as high as 1.97 ± 0.04 M	
[18], may place upper limits to thermodynamics quantities
like energy density, pressure, baryon number density, and
chemical potential [19].

There are in the literature many proposals for the nuclear
EoS of neutron stars [20–25]. Also, some fits provide a uni-
fied EoS for the neutron star interior [26]. Here, since our
focus relies on the gravity approach we will adopt simple
configurations usually adopted as a first contact with neutron
stars physics and which can be found in standard textbooks.
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Fig. 1 Mass–radius contours for a pure neutron star (without interac-
tions) using a Fermi gas equation of state

Let us firstly adopt a pure neutron fluid using the Fermi
gas model as the Oppenheimer–Volkoff model [9]. This con-
figuration is, strictly speaking, unrealistic since actual neu-
tron stars contain small fractions of protons and electrons
which avoid the neutron decay via weak interactions. Also, a
pure neutron configuration fails in counting for the nucleon–
nucleon interactions which are important to the energy den-
sity. However, we use it as a first analysis of neutron stars. A
simple introduction to such EoS can be found in Refs. [1,27].
It corresponds to a polytrope p ∼ ργ with γ = 5/3. We use
in this work

ρ̄( p̄)

c2 = K̄ −1 p̄3/5, (21)

where the coefficient of (21) is fitted in Ref. [27] as K̄ =
1.914. The bar over the density and pressure makes them
dimensionless quantities via the transformations p = ε0 p̄
and ρ = ε0ρ̄, where ε0 = 1.603 × 1038 ergs/cm3.

For this EoS we plot the mass–radius diagram in Fig. 1.
It shows the stable configurations for different values of the
central pressure p(r = 0) = p0. Low-mass/large-radius
solutions correspond to small starting values of p0. We plot
with the solid line the TOV solution. The neo-Newtonian
(solid-red) and the Newtonian (short-dashed) solutions are
also shown. Concerning the TOV solution and the Newto-
nian one, there is a reliable qualitative agreement of these
results. As expected, the relativistic solution presents a max-
imum (here Mmax ∼ 0.95M	 at R ∼ 8 km) while for the
Newtonian case the larger the mass, the smaller the radius.

The quantitative equivalence between the TOV and the
neo-Newtonian models does not occur. More massive con-
figurations are allowed in the neo-Newtonian context. How-
ever, a remarkable result is that the neo-Newtonian solution
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Fig. 2 Mass–radius contours for a pure neutron star (without interac-
tions) using a Fermi gas equation of state

also presents a maximum mass which is a typical relativistic
aspect. This shows that it can be used as a first approximation
to the problem.

Performing a quantitative comparison between the New-
tonian and the neo-Newtonian cases, although the existence
of the maximum, there is, indeed, the indication that by
adding the pressure to the Newtonian formalism one obtains
more compact stars corroborating the relativistic intuition
that pressure “amplifies” gravity effects.

In Fig. 1 we have calculated the mass of the neo-
Newtonian case using the definition (20) which is the same as
the other cases and therefore allows us a proper comparison
of the results. However, within the neo-Newtonian formula-
tion there is some freedom in defining the meaning of mass.
For example, the quantity M̃ (19) could be used instead. Also,
as discussed previously, one has to take care with the defini-
tions of inertial, passive-gravitational and active gravitational
masses. Hence, being the actual definition of mass in the neo-
Newtonian formalism a tricky issue, we plot in Fig. 2 the mass
diagrams with a comparison of the possible interpretations
of mass within the neo-Newtonian framework. The curve m0

is the same as shown previously in Fig. 1. The quantity M̃
is represented by the long dashed line in these plots. We call
it m3, i.e., m3 ∼ ∫

(ρ + 3p)r2dr . Also, we display the case
m1 ∼ ∫

(ρ + p)r2dr .
Now we repeat the above comparison between the three

approaches but using a more realistic EoS. We assume a
pure neutron star but with nucleon–nucleon interactions. We
follow the Prakash method for building such an interacting
Fermi gas model EoS [28]. This equation assumes the poly-
tropic form

ρ( p̄)

c2 = (κ0ε0)
−1/2 p̄1/2, (22)
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Fig. 3 Mass–radius contours for a pure neutron star (with nucleon–
nucleon interactions) using a Fermi gas equation of state

where now ε0 = m4
nc5/3π3h̄3 and the nuclear (in)com-

pressibility is κ0 = 363 MeV.
Solving again the equilibrium equations, we show in Fig. 3

the mass–radius contours. Here, the Newtonian equations do
not apply. Together with the TOV (black solid) and the stan-
dard neo-Newtonian (red solid line) result, we add here the
other options for calculating the mass in the neo-Newtonian
case (dashed lines). Here again, independently on how we
compute the neo-Newtonian mass, it does not agree with the
full relativistic solution.

The effect of the nucleons’ interactions is quite remarkable
since the allowed maximum masses are now much larger
than the situation in Fig. 1. The TOV maximum mass now
M ∼ 2.3 M	 (at R = 13.5 km) is a reflection of the large
value of the nuclear (in)compressibility κ0 = 363 MeV used
in this analysis.

In any of the cases studied here, the neo-Newtonian model
was not able to correctly, i.e., quantitatively, describe the gen-
eral relativistic predictions. Therefore, although this formal-
ism represents a reliable tool for studying cosmology, the
same does not seem to happen for stellar configurations.

5 Conclusions

It is a remarkable fact that the general relativity predictions
for expanding backgrounds can be mimicked by simple New-
tonian models. The dynamics of an expanding Newtonian
sphere is the same as the relativistic Friedmann–Lemaitre–
Robertson–Walker universe dominated by matter, i.e., the
Einstein–de Sitter universe. Although the Newtonian cos-
mology fails in describing epochs of the universe where
the pressure is relevant, the neo-Newtonian cosmology was
developed to fill this gap.

The question we addressed in this work was how to under-
stand whether such exact correspondence between the neo-
Newtonian model and the full relativistic theory remains the
same for static configurations. Hence, neutron stars seem to
be the perfect laboratory for testing our proposal.

After reviewing the standard Newtonian and the TOV
equations, we developed the neo-Newtonian version for the
hydrostatic equilibrium in static spherical configurations.
The neo-Newtoniam formalism for stars has a structure
which looks like the TOV one but without the Schwartzs-
child-like correction in the denominator of Eq. (15).

We probed both the Newtonian, the neo-Newtonian, and
the relativistic approaches by calculating their equilibrium
configurations for some specific neutron stars equation of
states. Firstly we used the Fermi gas approximation for a pure
neutron star (the classical Oppenheimer–Volkoff) model. The
results were shown in Figs. 1 and 2. In general, a clear dif-
ference between the Newtonian and the relativistic theory is
the existence of a maximum mass in the latter. As one can
see in Fig. 1, although the neo-Newtonian result is not the
same as the relativistic one, it presents a maximum mass. This
result is a remarkable aspect of the neo-Newtonian formal-
ism. However, the neo-Newtonian value for the maximum
mass MnN ∼ 1.45M	 (see Fig. 1) is much larger than we
could expect for this EoS from simple analytical arguments
[29]. Therefore, the neo-Newtonian method seems to some-
how overestimate the stellar maximum mass.

We also used a more realistic EoS for neutron stars where
the interaction nucleon–nucleon is allowed. Concerning the
comparison between the fluid models used here, the same
qualitative results obtained in the first analysis are kept.

It is therefore shown that the neo-Newtonian hydrody-
namics formulated to match GR predictions for expanding
background reproduces qualitatively the relativistic effects
when applied to spherically symmetric configurations but
does not fit quantitatively the GR results in this situation.
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Appendix A: About the stellar virial Theorem

Here, we provide a complementary discussion of stellar con-
figurations by studying the proper modifications to the virial
theorem. We keep here the standard assumptions like hydro-
static equilibrium and that stars are made up of ideal gases.
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The total internal energy of a star can be written as

Ei =
∫ MT

0
udM =

∫ MT

0

3

2

K T

μ
dM =

∫ MT

0

3

2

p

ρ
dM. (23)

where we have used the ideal gas EoS, P = ρNA K T/μ. The
above result forms one of contributions to the virial theorem.
The other one comes from the hydrostatic equilibrium. For
example, if we multiply (13) by 4πr3dr and integrate over
the entire star we find
∫ R

0
12πr2 pdr = −Eg, (24)

where, as usual, Eg = − ∫ R
0 G M(r)ρ4πrdr . Since dM =

4πr2ρdr and having in mind (23), it results in the standard
result [11],

2Ei + Eg = 0. (25)

Now, let us follow the same steps but introducing the
neo-Newtonian concepts. First of all, note that since the
computation of the internal energy Ei involves micro-
scopic/thermodynamic physics this quantity will not be
changed if we work with either modified kinematical or grav-
itational concepts. Hence, we will assume that the internal
energy (23) remains the same.

The neo-Newtonian formalism involves a different defi-
nition for the mass. It is worth noting that the definition of
dM̃ (19) can be integrated and written as

M̃ − M =
∫ R

0
12πr2 pdr = 2

Ei

c2 , (26)

where M obeys to (14). Note that we have recovered the
proper units by including the speed of light c. Taking the limit
c → ∞ we see that M̃ = M and therefore the Newtonian
result is recovered.

We take now the neo-Newtonian hydrostatic equilibrium
(18) and proceed as above multiplying it by 4πr3dr and
integrating over the entire star. We find a very similar virial
configuration,

2Ei + Ẽg = 0, (27)

but the modified gravitational energy Ẽg here reads

Ẽg = Eρρ
g + 4Eρp

g + 3E pp
g . (28)

The quantities Eρp and E pp are the new contributions to the
virial equilibrium due to the pressure effects. The contribu-
tions to (28) are defined here using a simplified notation

E XY
g = −

∫ R

0

G

r

(
4πr3

3

)
XY 4πr2dr, (29)

where X and Y can be either the density ρ or the pressure p.
The combination X = Y = ρ results in the standard

Newtonian gravitational energy as used in (24). The quantity
Eρp

g results from adopting X = ρ and Y = p. There is
also a pure pressure square term contribution E pp, which is
calculated adopting X = Y = p.
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