182 research outputs found

    Investigation of passive flow control techniques to enhance the stall characteristics of a microlight aircraft

    Get PDF
    This report investigates the enhancement of aerodynamic stall characteristics of a Skyranger microlight aircraft by the use of passive flow control techniques, namely vortex generators and turbulators. Each flow control device is designed and scaled to application conditions. Force balance measurements and surface oil flow visualisation are carried out on a half-model of the microlight to further investigate the nature of the flow on the aircraft with and without the flow control devices. The results indicate a clear advantage to the use of turbulators compared with vortex generators. Turbulators increased the maximum lift coefficient by 2.8%, delayed the onset of stall by increasing the critical angle by 17.6% and reduced the drag penalty at both lower (pre-stall) and higher angles of attack by 8% compared to vortex generators. With vortex generators applied, the results indicated a delayed stall with an increase in the critical angle by 2% and a reduced drag penalty at higher angles of attack

    Subcortical cytoskeleton periodicity throughout the nervous system

    No full text
    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought

    Antagonistic Functions of MBP and CNP Establish Cytosolic Channels in CNS Myelin

    Get PDF
    SummaryThe myelin sheath is a multilamellar plasma membrane extension of highly specialized glial cells laid down in regularly spaced segments along axons. Recent studies indicate that myelin is metabolically active and capable of communicating with the underlying axon. To be functionally connected to the neuron, oligodendrocytes maintain non-compacted myelin as cytoplasmic nanochannels. Here, we used high-pressure freezing for electron microscopy to study these cytoplasmic regions within myelin close to their native state. We identified 2,′3′-cyclic nucleotide 3′-phosphodiesterase (CNP), an oligodendrocyte-specific protein previously implicated in the maintenance of axonal integrity, as an essential factor in generating and maintaining cytoplasm within the myelin compartment. We provide evidence that CNP directly associates with and organizes the actin cytoskeleton, thereby providing an intracellular strut that counteracts membrane compaction by myelin basic protein (MBP). Our study provides a molecular and structural framework for understanding how myelin maintains its cytoplasm to function as an active axon-glial unit.Summary The myelin sheath is a multilamellar plasma membrane extension of highly specialized glial cells laid down in regularly spaced segments along axons. Recent studies indicate that myelin is metabolically active and capable of communicating with the underlying axon. To be functionally connected to the neuron, oligodendrocytes maintain non-compacted myelin as cytoplasmic nanochannels. Here, we used high-pressure freezing for electron microscopy to study these cytoplasmic regions within myelin close to their native state. We identified 2,′3′-cyclic nucleotide 3′-phosphodiesterase (CNP), an oligodendrocyte-specific protein previously implicated in the maintenance of axonal integrity, as an essential factor in generating and maintaining cytoplasm within the myelin compartment. We provide evidence that CNP directly associates with and organizes the actin cytoskeleton, thereby providing an intracellular strut that counteracts membrane compaction by myelin basic protein (MBP). Our study provides a molecular and structural framework for understanding how myelin maintains its cytoplasm to function as an active axon-glial unit

    Multichannel read-out for arrays of metallic magnetic calorimeters

    Full text link
    Metallic magnetic micro-calorimeters (MMCs) operated at millikelvin temperature offer the possibility to achieve eV-scale energy resolution with high stopping power for X-rays and massive particles in an energy range up to several tens of keV. This motivates their use in a wide range of applications in fields as particle physics, atomic and molecular physics. Present detector systems consist of MMC arrays read out by 32 two-stage SQUID read-out channels. In contrast to the design of the detector array and consequently the design of the front-end SQUIDs, which need to be optimised for the physics case and the particles to be detected in a given experiment, the read-out chain can be standardised. We present our new standardised 32-channel parallel read-out for the operation of MMC arrays to be operated in a dilution refrigerator. The read-out system consists of a detector module, whose design depends on the particular application, an amplifier module, ribbon cables from room temperature to the millikelvin platform and a data acquisition system. In particular, we describe the realisation of the read-out system prepared for the ECHo-1k experiment for the operation of two 64-pixel arrays. The same read-out concept is also used for the maXs detector systems, developed for the study of the de-excitation of highly charged heavy ions by X-rays, as well as for the MOCCA system, developed for the energy and position sensitive detection of neutral molecular fragments for the study of fragmentation when molecular ions recombine with electrons. The choice of standard modular components for the operation of 32-channel MMC arrays offer the flexibility to upgrade detector modules without the need of any changes in the read-out system and the possibility to individually exchange parts in case of damages or failures
    corecore