75 research outputs found

    Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool

    Get PDF
    The research described in this thesis shows that the enrichment technique based on competitive root tip colonization allows the isolation of bacteria which can protect plants from TFRR through the mechanism competition for nutrients (and niches). The efficacy of biocontrol of one of these strains, P. putida PCL1760, was estimated under industrial conditions using both conventional and molecular techniques. Quantitative PCR was used also to distinguish between different forms of Fusarum oxysporum (Fox), which cannot be distinguished using otherwise so far. It was shown that nonpathogenic Fox strains in plant material cannot reach a concentration higher than 50 fg of fungal DNA per ng of total DNA. The obtained results are an illustration of an efficient strategy, which can be exploited for the isolation of biocontrol agents for greenhouses and of the application of fast molecular methods for the estimation of their efficacy in plant protection. Moreover, this molecular method a quantitative PCR can be used to monitor pathogenic strains in tomato.LEI Universiteit LeidenMicrobiologi

    Hydrocarbon oxidizing microorganisms: Their isolation and study of colonization capacity for the use in rhizoremediation processes of contaminated soils

    Get PDF
    © 2016, International Journal of Pharmacy and Technology. All rights reserved.Developing methods to clean up the environment from oil and oil sludge contaminations is a priority area of the environmental biotechnology. Despite significant advances in the field of studies, the issue of expanding the methods of soil purification from oil contamination remains open. In our studies, we, first of all, obtained a hydrocarbon oxidizing bacteria capable of the active colonization of plant rhizosphere and the oil degradation at the same time. Among the isolated strains, the strains belonging to the Pseudomonas genus had the greatest capacity to colonise plant roots and oil degradation. Identification of the main strains with high colonization capacity via biotyper and 16S rRNA gene analysis has shown that Pseudomonas putida and Pseudomonas fluorescens relate to the species that constitute a high priority for rhizoremediation. These microorganisms colonized the rye (Secale cereale) roots with an average density of 1.1-2.0×106 cells per centimetre of root length. Furthermore, at inoculation of germinated rye seeds and rye seeds treated with hydrocarbon bacteria, distribution of the bacteria degrading oil was observed over the entire area where the plant roots are growing. The total number of bacteria on the plant roots did not only maintain, but increased. Therefore, the isolated and identified strains of Pseudomonas putida and Pseudomonas fluorescens bacteria can be recommended for the use in rhizoremediation methods

    Modeling of lactic acid fermentation of leguminous plant juices

    Get PDF
    Lactic acid fermentation of leguminous plant juices was modeled to provide a comparative efficiency assessment of the previously selected strains of lactic acid bacteria as potential components of starter cultures. Juices of the legumes fodder galega, red clover, and alfalfa were subjected to lactic acid fermentation in 27 variants of the experiment. Local strains (Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, and Lactobacillus sp. RS 4) and the collection strain Lactobacillus plantarum BS 933 appeared the most efficient (with reference to the rate and degree of acidogenesis, ratio of lactic and acetic acids, and dynamics of microflora) in fermenting fodder galega juice; Lactobacillus sp. RS 1, Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, Lactobacillus sp. RS 4, and L. plantarum BS 933 were the most efficient for red clover juice. Correction of alfalfa juice fermentation using the tested lactic acid bacterial strains appeared inefficient, which is explainable by its increased protein content and a low level of acids produced during fermentation. © MAIK "Nauka/Interperiodica", 2006

    Strong enhancement of spin fluctuations in the low-temperature-tetragonal phase of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4

    Full text link
    Measurements of the static magnetization, susceptibility and ESR of Gd spin probes have been performed to study the properties of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4 (x less or equal 0.02) with the low temperature tetragonal structure. According to the static magnetic measurements the CuO_2 planes are magnetically decoupled in this structural phase. The ESR study reveals strong magnetic fluctuations at the ESR frequency which are not present in the orthorhombic phase. It is argued that this drastic enhancement of the spin fluctuations is due to a considerable weakening of the interlayer exchange and a pronounced influence of hole motion on the antiferromagnetic properties of lightly hole doped La_2CuO_4. No evidence for the stripe phase formation at small hole doping is obtained in the present study.Comment: 10 pages, LaTeX, 3 EPS figures; to be published in Journal of Physics: Condensed Matte

    NMR assignments of the N-terminal domain of Staphylococcus aureus hibernation promoting factor (SaHPF)

    Get PDF
    © 2017 Springer Science+Business Media B.V. Staphylococcus aureus: hibernation-promoting factor (SaHPF) is a 22.2 kDa stationary-phase protein that binds to the ribosome and turns it to the inactive form favoring survival under stress. Sequence analysis has shown that this protein is combination of two homolog proteins obtained in Escherichia coli—ribosome hibernation promoting factor (HPF) (11,000 Da) and ribosome modulation factor RMF (6500 Da). Binding site of E. coli HPF on the ribosome have been shown by X-ray study of Thermus thermophilus ribosome complex. Hence, recent studies reported that the interface is markedly different between 100S from S. aureus and E. coli. Cryo-electron microscopy structure of 100S S. aureus ribosomes reveal that the SaHPF-NTD binds to the 30S subunit as observed for shorter variants of HPF in other species and the C-terminal domain (CTD) protrudes out of each ribosome in order to mediate dimerization. SaHPF-NTD binds to the small subunit similarly to its homologs EcHPF, EcYfiA, and a plastid-specific YfiA. Furthermore, upon binding to the small subunit, the SaHPF-NTD occludes several antibiotic binding sites at the A site (hygromycin B, tetracycline), P site (edeine) and E site (pactamycin, kasugamycin). In order to elucidate the structure, dynamics and function of SaHPF-NTD from S. aureus, here we report the backbone and side chain resonance assignments for SaHPF-NTD. Analysis of the backbone chemical shifts by TALOS+ suggests that SaHPF-NTD contains two α-helices and four β-strands (β1-α1-β2-β3-β4-α2 topology). Investigating the long-term survival of S. aureus and other bacteria under antibiotic pressure could lead to advances in antibiotherapy

    Fermentation of high-protein plant biomass by introduction of lactic acid bacteria

    Get PDF
    Lactic acid bacteria displaying increased ability to produce lactic acid, medium proteolytic activity, and tolerance to osmotic stress were isolated under selective conditions from phyllosphere and rhizosphere of registered and raised cultivars of legumes. Lactic fermentation of poorly ensilable leguminous plants (red clover and Caucasian goat's rue) was performed by introduction of rifampin-resistant homofermenting representatives of the genus Lactobacillus (selected according to a set of technologically important characteristics). The results demonstrate that introduction of active local strains of lactobacteria, as well as the collection strain Lactobacillus plantarum BS933, enhances activation of ensiling and increases the quality of fodder, as assessed according to the standard criteria (a decrease in pH of the medium, the ratio of lactic acid to fatty acid homologues, and the composition of silage microflora). © 2005 MAIK "Nauka/Interperiodica"

    Backbone and side chain NMR assignments for the ribosome Elongation Factor P (EF-P) from Staphylococcus aureus

    Get PDF
    © 2018, Springer Nature B.V. Elongation Factor P (EF-P) is a 20.5 kDa protein that provides specialized translation of special stalling amino acid motifs. Proteins with stalling motifs are often involved in various processes, including stress resistance and virulence. Thus it has been shown that the virulent properties of microorganisms can be significantly reduced if the work of EF-P is disrupted. In order to elucidate the structure, dynamics and function of EF-P from Staphylococcus aureus (S. aureus), here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of EF-P. Analysis of the backbone chemical shifts by TALOS+ suggests that EF-P contains 1 α-helix and 13 β-strands (β1-β2-β3-β4-β5-β6-β7-α1-β8-β9-β10-β11-β12-β13). The solution of the structure of this protein by NMR and X-ray diffraction analysis, as well as the structure of the ribosome complex by cryo-electron microscopy, will allow further screening of highly selective inhibitors of the translation of the pathogenic bacterium S. aureus. Here we report the almost complete 1H, 13C, 15N backbone and side chain NMR assignment of a 20.5 kDa EF-P

    E-site drug specificity of the human pathogen Candida albicans ribosome

    Get PDF
    International audienceCandida albicans is a widespread commensal fungus with substantial pathogenic potential and steadily increasing resistance to current antifungal drugs. It is known to be resistant to cycloheximide (CHX) that binds to the E–transfer RNA binding site of the ribosome. Because of lack of structural information, it is neither possible to understand the nature of the resistance nor to develop novel inhibitors. To overcome this issue, we determined the structure of the vacant C. albicans 80 S ribosome at 2.3 angstroms and its complexes with bound inhibitors at resolutions better than 2.9 angstroms using cryo–electron microscopy. Our structures reveal how a change in a conserved amino acid in ribosomal protein eL42 explains CHX resistance in C. albicans and forms a basis for further antifungal drug development

    Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper

    Get PDF
    Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture
    corecore