198 research outputs found

    Diurnal modulation signal from dissipative hidden sector dark matter

    Get PDF
    We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter particles charged under an unbroken U(1)′U(1)' interaction. Previous work has shown that such a model has the potential to explain dark matter phenomena on both large and small scales. In this framework, the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat provided kinetic mixing interaction exists with strength ϵ∼10−9\epsilon \sim 10^{-9}. This type of kinetically mixed dark matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern hemisphere, and find that the modulation is large (≳10%\gtrsim 10\%) for a wide range of parameters.Comment: 12 pages, 4 figures, clarifying comments and references adde

    Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics

    Get PDF
    Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation, wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework, it is possible to provide an unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired expansionary history of the Universe by an accurate choice of potential, or other functions defined within the theory (as in the case of mimetic f(R)f(R) gravity). We briefly discuss cosmological perturbation theory within mimetic gravity. As a case study within which we apply the concepts previously discussed, we study a mimetic Ho\v{r}ava-like theory, of which we explore solutions and cosmological perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity, and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well as a concise but self-contained summary of recent findings, progresses, open questions, and outlooks on future research directions.Comment: 68 pages, invited review to appear in Advances in High Energy Physic

    The state of the dark energy equation of state circa 2023

    Get PDF
    We critically examine the state of current constraints on the dark energy (DE) equation of state (EoS) w. Our study is motivated by the observation that, while broadly consistent with the cosmological constant value w = -1, several independent probes appear to point towards a slightly phantom EoS (w ∼ -1.03) which, if confirmed, could have important implications for the Hubble tension. We pay attention to the apparent preference for phantom DE from Planck Cosmic Microwave Background (CMB) data alone, whose origin we study in detail and attribute to a wide range of (physical and geometrical) effects. We deem the combination of Planck CMB, Baryon Acoustic Oscillations, Type Ia Supernovae, and Cosmic Chronometers data to be particularly trustworthy, inferring from this final consensus dataset w = -1.013+0.038-0.043, in excellent agreement with the cosmological constant value. Overall, despite a few scattered hints, we find no compelling evidence forcing us away from the cosmological constant (yet)

    Decrease in n-acetylaspartate following concussion may be coupled to decrease in creatine

    Get PDF
    Objectives: To assess the time course changes in brain N-acetylaspartate (NAA) and creatine (Cr) in athletes who suffered a sport-related concussion. Participants: Eleven non-consecutive concussed athletes and 11 sex and age-matched control volunteers. Main outcome measures: At 3, 15, 30 and 45 days post-injury, athletes were examined by proton Magnetic Resonance Spectroscopy (1H-MRS) for the determination of NAA,(Cr) and choline (Cho). 1H-MRS data recorded in the control group were used for comparison. Results: Compared to controls (2.18 ± 0.19), athletes showed an NAA/Cr increase at 3 (2.71 ± 0.16; p < 0.01) and 15 days (2.54 ± 0.21; p < 0.01), followed by a decrease and subsequent normalization at 30 (1.95 ± 0.16, p < 0.05) and 45 days(2.17 ± 0.20; p <0.05) post-concussion. NAA/Cho decreased at 3, 15 and 30 days post-injury (p < 0.01 compared to controls), with no differences from controls at 45 days post-concussion. Significant increase in the Cho/Cr after 3 (+33%, p < 0.01) and 15 (+31.5%, p < 0.01) days post-injury was observed, whilst no differences compared to controls were recorded at 30 and 45 days post-impact. Conclusions: This cohort of athletes indicates that concussion may cause concomitant decrease in cerebral NAA and Cr. This occurrence provokes longer time of metabolism normalization, as well as longer resolution time of concussion-associated clinical symptoms

    Formation of a disk structure in the symbiotic binary AX Per during its 2007-10 precursor-type activity

    Full text link
    AX Per is an eclipsing symbiotic binary. During active phases, deep narrow minima are observed in its light curve, and the ionization structure in the binary changes significantly. From 2007.5, AX Per entered a new active phase. It was connected with a significant enhancement of the hot star wind. Simultaneously, we identified a variable optically thick warm (Teff ~ 6000 K) source that contributes markedly to the composite spectrum. The source was located at the hot star's equator and has the form of a flared disk, whose outer rim simulates the warm photosphere. The formation of the neutral disk-like zone around the accretor during the active phase was connected with its enhanced wind. We suggested that this connection represents a common origin of the warm pseudophotospheres that are indicated during the active phases of symbiotic stars.Comment: 13 pages, 9 figures, 8 tables, accepted for A&
    • …
    corecore