47 research outputs found

    On the Length of the Relaxation Zone of Ionization Behind a Strong Shock Wave Front in the Air

    Get PDF
    Relaxation zone behind strong shock wave front in ai

    Application of dynamic priorities for controlling the characteristics of a queuing system

    Get PDF
    This paper considers the development and modification of an imitation model of a queuing system. The initial model uses the laws of control (discipline of expectation and service) with mixed priorities. The work investigates the model with three types of entities (absolute priority, relative priority and priority-free ones) in the regime of overload, i.e. a system with losses. Verification and validation of the created imitation model confirmed its adequateness and accuracy of received results. The application of dynamic priorities for changing the laws of model control substantially alters certain system characteristics. The creation of the model in MatLab Simulink environment with the use of SimEvents and Stateflow library modules allowed creating a fairly complex queuing system and obtain new interesting results

    Application of dynamic priorities for controlling the characteristics of a queuing system

    Get PDF
    This paper considers the development and modification of an imitation model of a queuing system. The initial model uses the laws of control (discipline of expectation and service) with mixed priorities. The work investigates the model with three types of entities (absolute priority, relative priority and priority-free ones) in the regime of overload, i.e. a system with losses. Verification and validation of the created imitation model confirmed its adequateness and accuracy of received results. The application of dynamic priorities for changing the laws of model control substantially alters certain system characteristics. The creation of the model in MatLab Simulink environment with the use of SimEvents and Stateflow library modules allowed creating a fairly complex queuing system and obtain new interesting results

    Kaon pair production in proton-nucleus collisions at 2.83 GeV kinetic energy

    Get PDF
    The production of non-phi K+K- pairs by protons of 2.83 GeV kinetic energy on C, Cu, Ag, and Au targets has been investigated using the COSY-ANKE magnetic spectrometer. The K- momentum dependence of the differential cross section has been measured at small angles over the 0.2--0.9 GeV/c range. The comparison of the data with detailed model calculations indicates an attractive K- -nucleus potential of about -60 MeV at normal nuclear matter density at a mean momentum of 0.5 GeV/c. However, this approach has difficulty in reproducing the smallness of the observed cross sections at low K- momenta.Comment: 7 pages, 5 figures, 1 tabl

    The production of K+K- pairs in proton-proton collisions at 2.83 GeV

    Get PDF
    Differential and total cross sections for the pp -> ppK+K- reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp -> pp phi cross section from that of non-phi production. The differential spectra show that higher partial waves represent the majority of the pp -> pp phi total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave phi-p enhancement near threshold. The non-phi data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.Comment: 12 pages, 12 figures, 3 table

    Momentum dependence of the phi-meson nuclear transparency

    Full text link
    The production of phi mesons in proton collisions with C, Cu, Ag, and Au targets has been studied via the phi -> K+K- decay at an incident beam energy of 2.83 GeV using the ANKE detector system at COSY. For the first time, the momentum dependence of the nuclear transparency ratio, the in-medium phi width, and the differential cross section for phi meson production at forward angles have been determined for these targets over the momentum range of 0.6 - 1.6 GeV/c. There are indications of a significant momentum dependence in the value of the extracted phi width, which corresponds to an effective phi-N absorption cross section in the range of 14 - 21 mb.Comment: 9 pages, 5 figure

    Comparison of inclusive K+ production in proton-proton and proton-neutron collisions

    Get PDF
    The momentum spectra of K+ produced at small angles in proton-proton and proton-deuteron collisions have been measured at four beam energies, 1.826, 1.920, 2.020, and 2.650 GeV, using the ANKE spectrometer at COSY-Juelich. After making corrections for Fermi motion and shadowing, the data indicate that K+ production near threshold is stronger in pp- than in pn-induced reactions. However, most of this difference could be made up by the unobserved K0 production in the pn case.Comment: 6 pages, 4 figures, Submitted to PR

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ элСктрохимичСском ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ очистки тСхнологичСских растворов ΠΎΡ‚ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΌΠ΅Π΄ΠΈ ΠΈ тринатрийфосфата

    Get PDF
    The paper considers the potential practical application of an electrochemical membrane method in the process of copper sulfate and trisodium phosphate removal from industrial water. The research objects were process solutions containing copper sulfate and trisodium phosphate and semipermeable polymeric membranes with various selective permeability characteristics. The study covers the effect that the transmembrane parameters of electromembrane separation have on the main kinetic characteristics of MGA-95P and OPM-K membranes in the process of copper smelting production water treatment. Approximation expressions were obtained to calculate membrane rejection rate depending on the physicochemical basis of the semipermeable membrane polymer, transmembrane pressure as well as process solution concentration and temperature. Empirical coefficients were determined to calculate and predict rejection rate values that can be used in the design of laboratory, pilot and industrial units used in the separation, treatment and concentration of industrial and waste water. The mathematical model of mass transfer was developed for electrochemical membrane separation taking into account assumptions made based on the solutions of the Nernstβ€”Planck and Poissonβ€”Boltzmann equations. This model allows for process physical description and calculations of concentration fields in the intermembrane channel and concentration changes in permeate and retentate lines. The mathematical model was checked for adequacy by comparing experimental data on retention rate with theoretical values where discrepancies between the experimental and theoretical data were within the limits of the experimental error and the error of calculated values.РассмотрСны возмоТности практичСского примСнСния элСктрохимичСского ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π² процСссС очистки тСхнологичСских Π²ΠΎΠ΄ ΠΎΡ‚ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΌΠ΅Π΄ΠΈ ΠΈ тринатрийфосфата. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдования Π±Ρ‹Π»ΠΈ тСхнологичСскиС растворы, содСрТащиС ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ ΠΌΠ΅Π΄ΠΈ ΠΈ тринатрийфосфат, ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΡ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ сСлСктивно-ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΡ‹ΠΌΠΈ характСристиками. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС трансмСмбранных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² провСдСния элСктромСмбранного процСсса раздСлСния Π½Π° основныС кинСтичСскиС характСристики ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠœΠ“Π-95П ΠΈ ОПМ-К ΠΏΡ€ΠΈ очисткС тСхнологичСских Π²ΠΎΠ΄ мСдСплавильного производства. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ аппроксимационныС выраТСния для расчСта коэффициСнта задСрТания ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ Π² зависимости ΠΎΡ‚ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСской основы ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ трансмСмбранного давлСния, ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ тСхнологичСского раствора. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ эмпиричСскиС коэффициСнты, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ значСния коэффициСнта задСрТания, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ…, ΠΏΠΈΠ»ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… установок, примСняСмых Π² производствСнных процСссах раздСлСния, очистки ΠΈ концСнтрирования тСхнологичСских ΠΈ сточных Π²ΠΎΠ΄. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль массопСрСноса элСктрохимичСского ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ раздСлСния с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ принятых Π΄ΠΎΠΏΡƒΡ‰Π΅Π½ΠΈΠΉ Π½Π° основС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ΅Ρ€Π½ΡΡ‚Π°β€”ΠŸΠ»Π°Π½ΠΊΠ° ΠΈ ΠŸΡƒΠ°ΡΡΠΎΠ½Π°β€”Π‘ΠΎΠ»ΡŒΡ†ΠΌΠ°Π½Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ физичСски ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ процСсс ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ поля ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π² ΠΌΠ΅ΠΆΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΈ измСнСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π² Ρ‚Ρ€Π°ΠΊΡ‚Π°Ρ… ΠΏΠ΅Ρ€ΠΌΠ΅Π°Ρ‚Π° ΠΈ Ρ€Π΅Ρ‚Π΅Π½Ρ‚Π°Ρ‚Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° адСкватности матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ сравнСния ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ коэффициСнту задСрТания с Π΅Π³ΠΎ тСорСтичСскими значСниями. РасхоТдСниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ оказалось Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ошибки экспСримСнта ΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчСтных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½
    corecore