519 research outputs found

    The phase-separated states in antiferromagnetic semiconductors with polarizable lattice

    Full text link
    The possibility of the slab or stripe phase separation (alternating ferromagnetic highly- conductive and insulating antiferromagnetic layers) is proved for isotropic degenerate antiferromagnetic semiconductors. This type of phase separation competes with the droplet phase separation (ferromagnetic droplets in the antiferromagnetic host or vice versa). The interaction of electrons with optical phonons alone cannot cause phase-separated state with alternating highly-conductive and insulating regions but it stabilizes the magnetic phase separation. The magnetostriction deformation of the lattice in the phase-separated state is investigated.Comment: 17 Pages, 1 EPS Figur

    Semiclassical theory of shot noise in disordered SN contacts

    Full text link
    We present a semiclassical theory of shot noise in diffusive superconductor - normal metal contacts. At subgap voltages, we reproduce the doubling of shot noise with respect to conventional normal-metal contacts, which is interpreted in terms of an energy balance of electrons. Above the gap, the voltage dependence of the noise crosses over to the standard one with a voltage-independent excess noise. The semiclassical description of noise leads to correlations between currents at different electrodes of multiterminal SN contacts which are always of fermionic type, i.e. negative. Using a quantum extension of the Boltzmann - Langevin method, we reproduce the peculiarity of noise at the Josephson frequency and obtain an analytical frequency dependence of noise at above-gap voltages.Comment: 4 pages RevTeX, 1 eps figur

    Cascade Boltzmann - Langevin approach to higher-order current correlations in diffusive metal contacts

    Full text link
    The Boltzmann - Langevin approach is extended to calculations of third and fourth cumulants of current in diffusive-metal contacts. These cumulants result from indirect correlations between current fluctuations, which may be considered as "noise of noise". The calculated third cumulant coincides exactly with its quantum-mechanical value. The fourth cumulant tends to its quantum-mechanical value e3I/105-e^3I/105 at high voltages and to a positive value 2e2T/3R2e^2T/3R at V=0 changing its sign at eV20TeV \sim 20T.Comment: 6 pages, 2 eps figures, typo corrected, minor change

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    Influence of e-e scattering on the temperature dependence of the resistance of a classical ballistic point contact in a two-dimensional electron system

    Full text link
    We experimentally investigate the temperature (T) dependence of the resistance of a classical ballistic point contact (PC) in a two-dimensional electron system (2DES). The split-gate PC is realized in a high-quality AlGaAs/GaAs heterostructure. The PC resistance is found to drop by more than 10% as T is raised from 0.5 K to 4.2 K. In the absence of a magnetic field, the T dependence is roughly linear below 2 K and tends to saturate at higher T. Perpendicular magnetic fields on the order of a few 10 mT suppress the T-dependent contribution dR. This effect is more pronounced at lower temperatures, causing a crossover to a nearly parabolic T dependence in a magnetic field. The normalized magnetic field dependencies dR(B) permit an empiric single parameter scaling in a wide range of PC gate voltages. These observations give strong evidence for the influence of electron-electron (e-e) scattering on the resistance of ballistic PCs. Our results are in qualitative agreement with a recent theory of the e-e scattering based T dependence of the conductance of classical ballistic PCs [ Phys. Rev. Lett. 101 216807 (2008) and Phys. Rev. B 81 125316 (2010)].Comment: as publishe

    A Theory of Magnets with Competing Double Exchange and Superexchange Interactions

    Full text link
    We study the competition between ferromagnetic double exchange (DE) and nearest-neighbour antiferromagnetic exchange in CMR materials. Towards this end, a single site mean field theory is proposed which emphasizes the hopping-mediated nature of the DE contribution. We find that the competition between these two exchange interactions leads to ferro- or antiferromagnetic order with incomplete saturation of the (sub)lattice magnetization. This conclusion is in contrast to previous results in the literature which find a canted spin arrangement under similar circumstances. We attribute this difference to the highly anisotropic exchange interactions used elsewhere. The associated experimental implications are discussed.Comment: 4 pages, Latex-Revtex, 3 PostScript figures. Please see report cond-mat/980523
    corecore