1,708 research outputs found
Search for EC and ECEC processes in Sn
Limits on EC (here EC denotes electron capture) and ECEC processes
in Sn have been obtained using a 380 cm HPGe detector and an
external source consisting of 53.355 g enriched tin (94.32% of Sn). A
limit with 90% C.L. on the Sn half-life of y for
the ECEC(0) transition to the excited state in Cd (1871.0
keV) has been established. This transition is discussed in the context of a
possible enhancement of the decay rate by several orders of magnitude given
that the ECEC process is nearly degenerate with an excited state in the
daughter nuclide. Prospects for investigating such a process in future
experiments are discussed. The limits on other EC and ECEC processes
in Sn were obtained on the level of y at the
90% C.L.Comment: 14 pages, 4 figure
Structure-phase states of silumin surface layer after electron beam and high cycle fatigue
Modification of eutectic silumin surface has been implemented by high-intensity pulsed electron beam. The irradiation mode has been revealed; it allows increasing silumin fatigue life in more than 3.5 times. It has been established that the main reason of this fact is the formation of a multiphase submicro- and nanosized structure. It has been elicited that the most danger stress concentrators are large silicon plates situated on the surface and near-surface layers
Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods
By methods of modern physical materials science the investigations analysis of phase composition, defect substructure, mechanical and tribological properties of Cr-Nb-C-V containing coatings formed in surfacing on martensitic wear resistant steel Hardox 450 were carried out. It was shown that surfacing resulted in the formation of high strength surface layer 6 mm in thinness. This layer had wear resistance 138 times greater than that of the base and friction coefficient 2.5 times less. Having analyzed the deflected mode of the deposited material in conditions of friction, a conclusion is drawn that plastic shear deformation is localized in the surface layer due to the high friction factor, as the result, scratches are formed. The maximum of tangential stress is deflected deep into the material provided that friction factor is low. On the basis of the investigations by methods of X-ray structural analysis and transmission diffraction electron microscopy it was shown that increase strength and tribological properties of surfacing metal were caused by its phase composition and state of defect substructure, namely, availability of interstitial phases (more than 36%) and martensitic type of a-phase structure
Effect of an electric field on superfluid helium scintillation produced by alpha-particle sources
We report a study of the intensity and time dependence of scintillation
produced by weak alpha particle sources in superfluid helium in the presence of
an electric field (0 - 45 kV/cm) in the temperature range of 0.2 K to 1.1 K at
the saturated vapor pressure. Both the prompt and the delayed components of the
scintillation exhibit a reduction in intensity with the application of an
electric field. The reduction in the intensity of the prompt component is well
approximated by a linear dependence on the electric field strength with a
reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of
columnar recombination, this electric field dependence leads to the conclusion
that roughly 40% of the scintillation results from species formed from atoms
originally promoted to excited states and 60% from excimers created by
ionization and subsequent recombination with the charges initially having a
cylindrical Gaussian distribution about the alpha track of 60 nm radius. The
intensity of the delayed component of the scintillation has a stronger
dependence on the electric field strength and on temperature. The implications
of these data on the mechanisms affecting scintillation in liquid helium are
discussed.Comment: 17 pages, 23 figure
First test of an enriched CdWO scintillating bolometer for neutrinoless double-beta-decay searches
For the first time, a cadmium tungstate crystal scintillator enriched in
Cd has been succesfully tested as a scintillating bolometer. The
measurement was performed above ground at a temperature of 18 mK. The crystal
mass was 34.5 g and the enrichment level ~82 %. Despite a substantial pile-up
effect due to above-ground operation, the detector demonstrated a high energy
resolution (2-7 keV FWHM in 0.2-2.6 MeV energy range), a powerful
particle identification capability and a high level of internal radiopurity.
These results prove that cadmium tungstate is an extremely promising detector
material for a next-generation neutrinoless double-beta decay bolometric
experiment, like that proposed in the CUPID project (CUORE Upgrade with
Particle IDentification)
Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing
The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life
- …