-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Juelich Shared Electronic Resources

John von Neumann Institute for Computing | NIC Im'

Automated Correctness Analysis of MPI
Programs with Intel Message Checker

V. Samofalov, V. Krukov, B. Kuhn, S. Zheltov,
A. Konovalov, J. DeSouza

published in

Parallel Computing:

Current & Future Issues of High-End Computing,

Proceedings of the International Conference ParCo 2005,

G.R. Joubert, W.E. Nagel, FJ. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 901-908, 2006.

(© 2006 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

https://core.ac.uk/display/35010183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

901

Automated Correctness Analysis of MPI Programswith Intel ® M essage
Checker

Victor Samofalo¥, Victor Krukov’, Bob Kuhrf, Sergey Zheltoy Alexandr Konovalo¥, Jayant
DeSouza

?Intel Corporation
PRussian Academy of Sciences

Intel Corporation

1. Introduction

Parallel programming is widely considered to be much moraptex than sequential program-
ming. When implementing multi-threaded or multi-proceasgfiel algorithms new kinds of errors
related to the simultaneous use of shared resources emargedition to introducing new kinds
of synchronization errors, the non-determinism of pafrgfegrams can lead to errors that occur
intermittently and are hard to reproduce on-demand. Furtbee, old "sequential” errors can be
erroneously interpreted as "parallel” ones, e.g. writimgwrong value to a global variable is harder
to track down in a multi-threaded program. These and otlaoffa significantly complicate imple-
mentation and debugging of parallel programs.

For larger parallel systems, distributed parallel prograng is the most effective way to improve
computing performance. Distributed parallel cluster eyt currently dominate high-performance
computing, constituting over 70% of the 2004 Top500 listimast cases, distributed parallel pro-
grams use the message-passing programming paradigm, d@hd wérious available candidates,
portability and performance have led to MPI asdedacto standard for cluster programming. How-
ever, the variety and complexity of MPI operations (abou #0the MPI 1.2 standard) has led to
the introduction of new kinds of program errors.

This paper examines the specific area of correctness andbysMPI programs and describes
a new correctness tool developed at Intel's Advanced Comp@enter, called Intéd) Message
Checker (IMC).[1] IntefR) Message Checker is a unique tool for tngomated analysis of MPI
programs. It analyzes trace files and detects several kiretsars with point-to-point and collective
operations such as (a) mismatches in message/buffer detastypes, and MPI resources, (b) race
conditions, and (c) deadlocks and system-buffer relatadldeks. In addition to the comprehensive
analysis engine, IMC also features a graphical user irdenfath broad functionality for program
and data representation. IMC can significantly assist an pfd&irammer with distributed program
analysis and debugging, and helps them find issues earliee ihebugging process and in less time.

An advantage ofrace-based analysis is that, if it is sufficiently fast and non-intrusive, it cae b
used to catch intermittent errors by enabling it for all proibn runs. Message Checker has low
perturbation, which allows it to be used on production rung the trace-based approach is well-
suited to finding subtle problems which surface intermttteon runs.

Fortunately, because the nature of message passing resheesl data, indeterministic and ir-
reproducible errors are not so common for distributed MPpaims as for shared memory ones.
But there are other issues unique to large distributed progr— scalability issues for large systems
(how does a user find a problem in 500 processes?) and theorammhktant performance optimiza-
tion. A clear advantage @utomated analysis is that it scales to extremely large systems better than

902

current-generation debugging tools (the almighty nt f).

We note also that automated correctness checking tools @tMC) can not only be used for
debugging, i.e. assisting the programmer to find an errargbwne step further and actually find
the error. As such, this new class of tools, which we refestmafidence tools, can help ensure that
a program that provides correct results is really correcessage Checker is widely used by Intel
engineers and has been used to detect issues in severaiviaiviPI applications.

In addition to indicating the error, an advanced correcrdsecking tool should provide maxi-
mum information about the program run to aid the programmdetecting the cause of the problem.
Information only about the stack frame of a failed MPI calhieh is what is usually available in
debuggers, is not enough for effective bug fixing becauseiskeeis unable to answer a non-trivial
but very important question — "How did we reach this statéhm program?”. A call stack provides
the current call path, but not the history of calls that hacetb the program reaching this state, i.e.
it provides depth, but not breadth. Well-known interacttebugging tools for large parallel systems
do not make the situation clearer for users. Butdik history is easily provided by a trace-based
post-mortem tool such as IMC. The ideal would be a blend @rattive and trace-based program
analysis for MPI correctness.

The rest of this paper is organized as follows. MPI's comroation primitives provide opportu-
nities to check correctness on various levels as descnibie inext section. Our initial performance
results are described in Section 4.

2. Taxonomy of Detected Errors by L ocality of Analysis

By definition, a programming error is a difference betweeanadehavior and desired behavior
(i.e., specification). From the analysis point of view, esrdetected by Intél) Message Checker
can be divided into four categories:

1. Errors detection which requires only local MPI functigriormation. e.g. a derived data
type with overlapping elements on the receiving side, ssumh types are valid only for send
operations.

2. Errors that can be detected by analyzing only local pogsrmation, e.g. initiating a non-
blocking point-to-point operation without waiting for aeking the request.

3. Errors related to multiple processes inside one commatmiicThere are two sub-classes here:

(a) Point-to-point errors e.g. incompatibility betweertadtypes in a send and its corre-
sponding receive

(b) Collective operation errors, e.g. different procesgexifying different reduce operation
inanMPl _Reduce().

4. Error detection which does not require information abatgr-process communication but
requires information about the states of processes instdamost serious errors in this cat-
egory are so-callepotential deadlocks. In our terminology, a potential deadlock is a deadlock
that may become actual if the internal behavior of a functioanged, e.g. alPl _Send()
for 4-byte message can be either blocking or non-blockimpgdding on the choice of the MPI
implementation.

The current version of Int@) Message Checker supports the semantics of the MPI-1.2asthnd
In future, IMC will be extended to support MPI-2.

903

src Intel® E‘
T Message
compilation wiith bV Tene Checker
Tracénézlﬁector

Technology

Y Visualizer
| Easmmmmmd 1race cache N I
Intel®
Tracenfnalyzer Analyze S

Figure 1. General Int@)) Message Checker Software Structure.

As an aside, we note that some error checking can be perfomsete the MPI library. An
interesting example of such an approach is re-mapping canuaiors, datatypes, etc. in MPICH2
into integer numbers that are then used for error-checkistgad of the original types. This way
the MPI library can easily detect invalid arguments (comiators, datatypes, etc.) during an MPI
function call.

3. Architecture of Intel® M essage Checker and Other Approachesto I mplementation

The general software architecture of IMC is presented on EigAt the linking stage, the MPI
program is instrumented with a special version of the ([Rtélrace Collector library (the PMPI
interface is used inside). Then trace data is collectechduhe program run and saved into a trace
file. Correctness analysis can be performed by either a cominae tool or in the GUI Visualizer
environment after the program finishes. The command-linsioe is targeted for batch/automated
testing; the GUI is designated for interactive use in a dgimggsession.

3.1. AnalysisApproach in IMC and Comparison With Related Tools

Other MPI checking tools like Marmot [5] can detect the saeteo$ errors as IMC except dead-
locks (the timeout method employed by Marmot cannot guaratitat a real deadlock was detected,
and cannot reconstruct the loop in the resource graph whiichgortant for the user to find the real
problem). The main difference between Marmot and IMC is mdpproach, i.e. Marmot uses an
online interactive approach, whereas IMC uses a tracedzfisne/post-mortem approach.

In the upcoming MPICH2 release a collective operationskingdibrary [3] will be available but
with less functionality then IMC has for such operations.

Both suffice for the “local” error cases described above., Buire complicated error detection
requires a more aggressive use of non-local contexts. Hnetteo approaches for this: run-time va-
lidity checking or post-mortem trace processing. Most efekisting tools (Marmot [5], collchk [3],
NEC run-time MPI checking library [7]) employ run-time aysis.

A significant advantage of run-time checking is the intevecand onine response, i.e. the user

904

can see the problem report directly as it was found, withpahding hours running the program to
collect a trace.

But run-time provided error diagnostics may have one digathge for the user — they may be
not able to see the call history (see Introduction) of thérithsted parallel task. Furthermore, the
efficient run-time detection of "distributed” errors andagrprone situations (like deadlocks and race
conditions) is quite complex [2]. Inter-process error dat leads to additional communication
overhead, which can be quite significant sometimes. TheBeedeies are overcome by IMC's
trace-based and post-mortem analysis.

On the other hand, the main disadvantage of the post-mopenoach is the possibility of huge
trace files; even modest parallel tasks can generate trateblumdreds of millions of events and of
many gigabytes in size. So, tools for post-mortem correastrobiecking should efficiently support
such huge data volumes.

3.2. Visualization Approachesin IMC

In program debugging it is very important for the user to ustisnd how his program appears to
be in some state. Saving the history of all program stategd®isuch as changes to every vari-
able) is unacceptable and also distracts the user with sixegaformation. One possible solution to
this problem is the automatic building of the program’s edation model using low-level data and
reverse engineering of high-level models. A survey of @xisapproaches to restoring high-level
states can be found in [4]. Such approaches originally wepéed to the object-oriented program-
ming model but in general can also be applied to the procédueasage-passing paradigm (for
example, a call to an object method can be considered asnbdageof a message to this object).

Luckily message-passing programming has number of alieersolutions in this area. Visualiza-
tion methods for message-passing traces have been in gevethd for over 25 years, and are quite
mature. They are mostly used in performance analysis, it aiposition is too restrictive. In-
deed, Gantt chart-based views have many times demonsthaiedsefulness during understanding
"what's going on in the parallel task”.

There are two main views for program structure presentatioklC Visualizer (see Fig. 2).

1. The Time-Line View — represents actual MPI function calt&l the interaction of processes
over time. This view reflects the native picture of prograraaiion and may be used to track
excessive delays and errors resulting from an unexpectsaliggn order.

2. The Event-Line View — represents the program executiom #od process interaction as a
logical sequence of MPI operations. That s, all MPI operatiare ordered using some defined
relations between operations. For example, all colleaijerations serializing the execution
of multiple processedMPl _Bar ri er) have the same event number for all processes inside
the communicator. This simplifies the analysis of procéssesnsistent behavior.

4. Performance Results

In the current version of IMC, the user must perform sevdegsfor program correctness check-
ing. First, the user needs to compile their program with Zigpeersion of InteR) Trace Collector
that is used for correctness data collection. (ITC Messagker Library (ITCMCL) is a special
version of ITC for extended trace data collection used foreziness checking but because of that it
is not recommended for accurate performance analysi®l@nTrace Collector is implemented as
overloaded MPI function calls which write data to memoryferg and save them in a background
thread to a local temporary file.

I_[J,-' Infa 'y'Legend 'y

p0
pl Function Color
p2 1 |Uknown operatiof
p3 2 Mot an operation
pd 3 Individual operati
p5 4 | Pointto point
p6 5 SR pointto point
p7 6 Multi point to poin|
p8 7 | Collective operati
pd
—Ruler range Selection
0.0445199895
| = I I
T T T T I T T T T | T T T T | T T T T | T T T T | T = |0.0?0?04l303 I
- D049 n.054 1.059 0.064 .06%
% Traces A Time Line A EventLine f

Ewvents ISnurces I Statistics | MPI Info I

p O {HIHRHHARHER R RN [|/ Tnfo Y Tegend \
ox (T Tin: 0432040000 0051997000
p2 JHPNPRRERNRCAA R AAACERRREERI Errors:no |
p3 R ISR R AR ASERN
o4 JREREE AR R int MPL_Scatter(
- e e
p6 sendtypel MPI_Datatype) = 0x8939220:
TR A recv_bufer(void") - 0x8939240
o & JHPRRINPRERRNRCAA R ARACERRRRRRRI recveount(int) = 10:
p 9 JIARRERCLARRRNRRRFRRRREAAARNIDAR Ruler range Selection
(7 || |0.0000000000 |102808219178
||||||||IIII(;IIIIIIIIZI()III|||||Ialolll|||||;'|0|||||||||5|0|||||||||6|0||||||||:|’r|0||||||||4 I?Q.UUUUUUUUUU |1028082191?8

\ Traces i Time Line h Event Line {
Events |S|::|urces I Statistics I MPI Info I

Figure 2. Time Line and Event Line Views.

In Figs. 3—4 we present data for NAS Parallel Benchmarkstda Intel MPI Benchmarks(IMB)
suite. As can be seen, the overhead of the ITCMCL library iseggmall. We should note that
standard MPI microbenchmarks like IMB provide a somewhatdptimistic estimation of tracing
overhead because they are not aware of ITC trace colleqtiegifes.

Our testbed was a 3-node cluster; each node had four @t&Xeon’™ 1.4 GHz CPU’s with
HypherThreading enabled; the interconnect used was Myrifide anomalous advantage of 8-
process runs over 4-process runs for some benchmarks iscchys memory bottleneck since the
4-process variant runs on a single node, and 8(9)-processran on two nodes).

Some observations from the real-world usage of (Rtélessage Checker are:

1. IMC is most usable during program development for debuggind correctness analysis.

2. Even for stable real-word applications, running IMC on t& them found overlapping of
1-byte receive buffers in two applications (one can be aersid a benign fault because the
process waited for any event from the other process and didisw the data sent.) This
demonstrates the usefulness of confidence tools.

3. IMC is useful even in situation when an error was found Hdyeottools (e.g. MPI itself)
because IMC has the program history information for analysig. when IMC was used on

906

120

- AN

)\\m e FT
£
\\ —u— F THrace

—a— CG+irace

—BT

—a— BT+trace

3
i

V/

Mop/ siprocess

|

I

g [ET-a) 16

Total processes

Figure 3. Overhead of correctness checking trace coliecBd, FT, and CG benchmarks.

120

100

—LU

—a—| U +trace
—— 5P

/\ ""
,—'—''_'_H"'\-\._
A \ —u—SP+trace
40
= \ —e—M G+irace
2

4 g =P -a 16

Toal processes

Mop/ siprocess
=

Figure 4. Overhead of correctness checking trace collecti, SP, and MG benchmarks.

907

the GAMESS [6] application — th®PI _Al | gat her () function call with different buffer
lengths was first detected by Ing@IMPI).

5. Conclusion

We have described the complexity of distributed parallegpamming in MPI and motivated the
need for a new correctness tool, the IeMessage Checker from Intel's Advanced Computing
Center. This tool features a trace-based approach thabWwasdrturbation, high scalability (due to
the avoidance of online global analyses), and providesl&isabry that complements the call stack
provided by debuggers. IMC also features an automated sindhat goes futher than a debugger
and actually detects errors rather than pointing out symptdherefore it has been useful to run it
on apparently correct programs. We coined the tesnfidence tools to reflect the new role of such
automated correctness tools. The trace-based approdsb iss&ful for catching intermittent errors
in large (time or CPU) runs, and the automated analysis gesvadvantages over manual debugging
techniques, especially for large systems. IMC’s GUI feaduan event-line view that separates out
logical MPI relationships from the time-centric timelinew.

References

[1] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victam8falov, Sergey Zheltov, Stanislav
Bratanov. Automated, scalable debugging of MPI progranmhb mitel Message Checker. // Second In-
ternational Workshop on Software Engineering for High 8enflance Computing System Applications,
May 2005, St. Louis, Missouri.

[2] R.Cypher, E.Leu. Efficient race detection for messaggesmg programs with nonblocking sends and
receives // Proceedings of the 7th IEEE Symposium on PhealteDistributeed Processing, 1995.

[3] C.Falzone, A.Chan, E.Lusk, W.Gropp. Collective ErratEction for MPI Collective Operations // Euro
PVMMPI'05, 2005.

[4] A.Hamou-Lhadj, T.C.Lethbridge. A survey of trace exition tools and techniques // Proceedings of
the 2004 conference of the Centre for Advanced Studies olal@whtive research Markham, Ontario,
Canada, 2004.

[5] B.Krammer, M.S.Miller, M.M.Resch. MPI Application Delopment Using the Analysis Tool MAR-
MOT // ICCS 2004, Krakow, Poland, June 7-9, 2004. LectureeNdah Computer Science, Vol. 3038,
pp. 464—471, Springer, 2004.

[6] M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert,.$1Gordon, J.H.Jensen, S.Koseki, N.Matsunaga,
K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomergreral Atomic and Molecular Electronic
Structure System // J. Comput. Chem., 14, 1347-1363(1993).

[7]1 Jesper Larsson Traff, Joachim Worringen. Verifyindl€ctive MPI Calls // Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 11th Earopa/M/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 19-22, 2004, Proceedingauredgbtes in Computer Science, Vol. 3241,
pp. 18-27, Springer, 2004.

908

