
John von Neumann Institute for Computing

Automated Correctness Analysis of MPI
Programs with Intel Message Checker

V. Samofalov, V. Krukov, B. Kuhn, S. Zheltov,
A. Konovalov, J. DeSouza

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 901-908, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Automated Correctness Analysis of MPI Programs with Intel R©Message
Checker

Victor Samofalova, Victor Krukovb, Bob Kuhnc, Sergey Zheltovc, Alexandr Konovalovc, Jayant
DeSouzac

aIntel Corporation

bRussian Academy of Sciences

cIntel Corporation

1. Introduction

Parallel programming is widely considered to be much more complex than sequential program-
ming. When implementing multi-threaded or multi-process parallel algorithms new kinds of errors
related to the simultaneous use of shared resources emerge.In addition to introducing new kinds
of synchronization errors, the non-determinism of parallel programs can lead to errors that occur
intermittently and are hard to reproduce on-demand. Furthermore, old ”sequential” errors can be
erroneously interpreted as ”parallel” ones, e.g. writing the wrong value to a global variable is harder
to track down in a multi-threaded program. These and other factors significantly complicate imple-
mentation and debugging of parallel programs.

For larger parallel systems, distributed parallel programming is the most effective way to improve
computing performance. Distributed parallel cluster systems currently dominate high-performance
computing, constituting over 70% of the 2004 Top500 list. Inmost cases, distributed parallel pro-
grams use the message-passing programming paradigm, and ofthe various available candidates,
portability and performance have led to MPI as thede facto standard for cluster programming. How-
ever, the variety and complexity of MPI operations (about 200 in the MPI 1.2 standard) has led to
the introduction of new kinds of program errors.

This paper examines the specific area of correctness analysis for MPI programs and describes
a new correctness tool developed at Intel’s Advanced Computing Center, called IntelR© Message
Checker (IMC).[1] IntelR© Message Checker is a unique tool for theautomated analysis of MPI
programs. It analyzes trace files and detects several kinds of errors with point-to-point and collective
operations such as (a) mismatches in message/buffer sizes,data types, and MPI resources, (b) race
conditions, and (c) deadlocks and system-buffer related deadlocks. In addition to the comprehensive
analysis engine, IMC also features a graphical user interface with broad functionality for program
and data representation. IMC can significantly assist an MPIprogrammer with distributed program
analysis and debugging, and helps them find issues earlier inthe debugging process and in less time.

An advantage oftrace-based analysis is that, if it is sufficiently fast and non-intrusive, it can be
used to catch intermittent errors by enabling it for all production runs. Message Checker has low
perturbation, which allows it to be used on production runs and the trace-based approach is well-
suited to finding subtle problems which surface intermittently on runs.

Fortunately, because the nature of message passing reducesshared data, indeterministic and ir-
reproducible errors are not so common for distributed MPI programs as for shared memory ones.
But there are other issues unique to large distributed programs — scalability issues for large systems
(how does a user find a problem in 500 processes?) and the need for constant performance optimiza-
tion. A clear advantage ofautomated analysis is that it scales to extremely large systems better than

901

2

current-generation debugging tools (the almightyprintf).
We note also that automated correctness checking tools (such as IMC) can not only be used for

debugging, i.e. assisting the programmer to find an error, but go one step further and actually find
the error. As such, this new class of tools, which we refer to asconfidence tools, can help ensure that
a program that provides correct results is really correct. Message Checker is widely used by Intel
engineers and has been used to detect issues in several non-trivial MPI applications.

In addition to indicating the error, an advanced correctness checking tool should provide maxi-
mum information about the program run to aid the programmer in detecting the cause of the problem.
Information only about the stack frame of a failed MPI call, which is what is usually available in
debuggers, is not enough for effective bug fixing because theuser is unable to answer a non-trivial
but very important question — ”How did we reach this state in the program?”. A call stack provides
the current call path, but not the history of calls that have led to the program reaching this state, i.e.
it provides depth, but not breadth. Well-known interactivedebugging tools for large parallel systems
do not make the situation clearer for users. But thecall history is easily provided by a trace-based
post-mortem tool such as IMC. The ideal would be a blend of interactive and trace-based program
analysis for MPI correctness.

The rest of this paper is organized as follows. MPI’s communication primitives provide opportu-
nities to check correctness on various levels as described in the next section. Our initial performance
results are described in Section 4.

2. Taxonomy of Detected Errors by Locality of Analysis

By definition, a programming error is a difference between actual behavior and desired behavior
(i.e., specification). From the analysis point of view, errors detected by IntelR© Message Checker
can be divided into four categories:

1. Errors detection which requires only local MPI function information. e.g. a derived data
type with overlapping elements on the receiving side, sincesuch types are valid only for send
operations.

2. Errors that can be detected by analyzing only local process information, e.g. initiating a non-
blocking point-to-point operation without waiting for or freeing the request.

3. Errors related to multiple processes inside one communicator. There are two sub-classes here:

(a) Point-to-point errors e.g. incompatibility between data types in a send and its corre-
sponding receive

(b) Collective operation errors, e.g. different processesspecifying different reduce operation
in anMPI_Reduce().

4. Error detection which does not require information aboutinter-process communication but
requires information about the states of processes instead. The most serious errors in this cat-
egory are so-calledpotential deadlocks . In our terminology, a potential deadlock is a deadlock
that may become actual if the internal behavior of a functionchanged, e.g. anMPI_Send()
for 4-byte message can be either blocking or non-blocking depending on the choice of the MPI
implementation.

The current version of IntelR© Message Checker supports the semantics of the MPI-1.2 standard.
In future, IMC will be extended to support MPI-2.

902

3

Figure 1. General IntelR© Message Checker Software Structure.

As an aside, we note that some error checking can be performedinside the MPI library. An
interesting example of such an approach is re-mapping communicators, datatypes, etc. in MPICH2
into integer numbers that are then used for error-checking instead of the original types. This way
the MPI library can easily detect invalid arguments (communicators, datatypes, etc.) during an MPI
function call.

3. Architecture of Intel R© Message Checker and Other Approaches to Implementation

The general software architecture of IMC is presented on Fig. 1. At the linking stage, the MPI
program is instrumented with a special version of the IntelR© Trace Collector library (the PMPI
interface is used inside). Then trace data is collected during the program run and saved into a trace
file. Correctness analysis can be performed by either a command-line tool or in the GUI Visualizer
environment after the program finishes. The command-line version is targeted for batch/automated
testing; the GUI is designated for interactive use in a debugging session.

3.1. Analysis Approach in IMC and Comparison With Related Tools
Other MPI checking tools like Marmot [5] can detect the same set of errors as IMC except dead-

locks (the timeout method employed by Marmot cannot guarantee that a real deadlock was detected,
and cannot reconstruct the loop in the resource graph which is important for the user to find the real
problem). The main difference between Marmot and IMC is in the approach, i.e. Marmot uses an
online interactive approach, whereas IMC uses a trace-based offline/post-mortem approach.

In the upcoming MPICH2 release a collective operations checking library [3] will be available but
with less functionality then IMC has for such operations.

Both suffice for the “local” error cases described above. But, more complicated error detection
requires a more aggressive use of non-local contexts. Thereare two approaches for this: run-time va-
lidity checking or post-mortem trace processing. Most of the existing tools (Marmot [5], collchk [3],
NEC run-time MPI checking library [7]) employ run-time analysis.

A significant advantage of run-time checking is the interactive and onine response, i.e. the user

903

4

can see the problem report directly as it was found, without spending hours running the program to
collect a trace.

But run-time provided error diagnostics may have one disadvantage for the user — they may be
not able to see the call history (see Introduction) of the distributed parallel task. Furthermore, the
efficient run-time detection of ”distributed” errors and error-prone situations (like deadlocks and race
conditions) is quite complex [2]. Inter-process error detection leads to additional communication
overhead, which can be quite significant sometimes. These deficiencies are overcome by IMC’s
trace-based and post-mortem analysis.

On the other hand, the main disadvantage of the post-mortem approach is the possibility of huge
trace files; even modest parallel tasks can generate traces with hundreds of millions of events and of
many gigabytes in size. So, tools for post-mortem correctness checking should efficiently support
such huge data volumes.

3.2. Visualization Approaches in IMC
In program debugging it is very important for the user to understand how his program appears to

be in some state. Saving the history of all program state changes (such as changes to every vari-
able) is unacceptable and also distracts the user with excessive information. One possible solution to
this problem is the automatic building of the program’s abstraction model using low-level data and
reverse engineering of high-level models. A survey of existing approaches to restoring high-level
states can be found in [4]. Such approaches originally were applied to the object-oriented program-
ming model but in general can also be applied to the procedural message-passing paradigm (for
example, a call to an object method can be considered as the sending of a message to this object).

Luckily message-passing programming has number of alternative solutions in this area. Visualiza-
tion methods for message-passing traces have been in development for over 25 years, and are quite
mature. They are mostly used in performance analysis, but such a position is too restrictive. In-
deed, Gantt chart-based views have many times demonstratedtheir usefulness during understanding
”what’s going on in the parallel task”.

There are two main views for program structure presentationin IMC Visualizer (see Fig. 2).

1. The Time-Line View — represents actual MPI function callsand the interaction of processes
over time. This view reflects the native picture of program execution and may be used to track
excessive delays and errors resulting from an unexpected execution order.

2. The Event-Line View — represents the program execution flow and process interaction as a
logical sequence of MPI operations. That is, all MPI operations are ordered using some defined
relations between operations. For example, all collectiveoperations serializing the execution
of multiple processes (MPI_Barrier) have the same event number for all processes inside
the communicator. This simplifies the analysis of processes’ inconsistent behavior.

4. Performance Results

In the current version of IMC, the user must perform several steps for program correctness check-
ing. First, the user needs to compile their program with a special version of IntelR© Trace Collector
that is used for correctness data collection. (ITC Message Checker Library (ITCMCL) is a special
version of ITC for extended trace data collection used for correctness checking but because of that it
is not recommended for accurate performance analysis). Intel R© Trace Collector is implemented as
overloaded MPI function calls which write data to memory buffers and save them in a background
thread to a local temporary file.

904

5

Figure 2. Time Line and Event Line Views.

In Figs. 3–4 we present data for NAS Parallel Benchmarks 2.4 in the Intel MPI Benchmarks(IMB)
suite. As can be seen, the overhead of the ITCMCL library is quite small. We should note that
standard MPI microbenchmarks like IMB provide a somewhat too optimistic estimation of tracing
overhead because they are not aware of ITC trace collection specifics.

Our testbed was a 3-node cluster; each node had four IntelR© XeonTM 1.4 GHz CPU’s with
HypherThreading enabled; the interconnect used was Myrinet. The anomalous advantage of 8-
process runs over 4-process runs for some benchmarks is caused by a memory bottleneck since the
4-process variant runs on a single node, and 8(9)-process ones run on two nodes).

Some observations from the real-world usage of IntelR© Message Checker are:

1. IMC is most usable during program development for debugging and correctness analysis.

2. Even for stable real-word applications, running IMC on ten of them found overlapping of
1-byte receive buffers in two applications (one can be considered a benign fault because the
process waited for any event from the other process and did not use the data sent.) This
demonstrates the usefulness of confidence tools.

3. IMC is useful even in situation when an error was found by other tools (e.g. MPI itself)
because IMC has the program history information for analysis, e.g. when IMC was used on

905

6

Figure 3. Overhead of correctness checking trace collection: BT, FT, and CG benchmarks.

Figure 4. Overhead of correctness checking trace collection: LU, SP, and MG benchmarks.

906

7

the GAMESS [6] application — theMPI_Allgather() function call with different buffer
lengths was first detected by IntelR© MPI).

5. Conclusion

We have described the complexity of distributed parallel programming in MPI and motivated the
need for a new correctness tool, the IntelR© Message Checker from IntelR©’s Advanced Computing
Center. This tool features a trace-based approach that has low perturbation, high scalability (due to
the avoidance of online global analyses), and provides a call history that complements the call stack
provided by debuggers. IMC also features an automated analysis that goes futher than a debugger
and actually detects errors rather than pointing out symptoms; therefore it has been useful to run it
on apparently correct programs. We coined the termconfidence tools to reflect the new role of such
automated correctness tools. The trace-based approach is also useful for catching intermittent errors
in large (time or CPU) runs, and the automated analysis provides advantages over manual debugging
techniques, especially for large systems. IMC’s GUI features an event-line view that separates out
logical MPI relationships from the time-centric timeline view.

References

[1] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zheltov, Stanislav
Bratanov. Automated, scalable debugging of MPI programs with Intel Message Checker. // Second In-
ternational Workshop on Software Engineering for High Performance Computing System Applications,
May 2005, St. Louis, Missouri.

[2] R.Cypher, E.Leu. Efficient race detection for message-passing programs with nonblocking sends and
receives // Proceedings of the 7th IEEE Symposium on Parallel and Distributeed Processing, 1995.

[3] C.Falzone, A.Chan, E.Lusk, W.Gropp. Collective Error Detection for MPI Collective Operations // Euro
PVMMPI’05, 2005.

[4] A.Hamou-Lhadj, T.C.Lethbridge. A survey of trace exploration tools and techniques // Proceedings of
the 2004 conference of the Centre for Advanced Studies on Collaborative research Markham, Ontario,
Canada, 2004.

[5] B.Krammer, M.S.Müller, M.M.Resch. MPI Application Development Using the Analysis Tool MAR-
MOT // ICCS 2004, Krakow, Poland, June 7-9, 2004. Lecture Notes in Computer Science, Vol. 3038,
pp. 464–471, Springer, 2004.

[6] M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga,
K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery General Atomic and Molecular Electronic
Structure System // J. Comput. Chem., 14, 1347-1363(1993).

[7] Jesper Larsson Träff, Joachim Worringen. Verifying Collective MPI Calls // Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 19-22, 2004, Proceedings. Lecture Notes in Computer Science, Vol. 3241,
pp. 18–27, Springer, 2004.

907

908

