1,258 research outputs found

    Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement

    Full text link
    [EN] Due to the elasticity of their joints, collaborative robots are seldom used in applications with force control. Besides, the industrial robot controllers are closed and do not allow the user to access the motor torques and other parameters, hindering the possibility of carrying out a customized control. A good alternative to achieve a custom force control is sending the output of the force regulator to the robot controller through motion commands (inner/outer loop control). There are different types of motion commands (e.g., position or velocity). They may be implemented in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not available for the user. This article is dedicated to the analysis of the effect of different inner loops and their combination with several external controllers. Two of the most determinant factors found are the type of the inner loop and the stiffness matrix. The theoretical deductions have been experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a polishing operation according to pre-established criteria.The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE), to the research work here published. Rodrigo Perez-Ubeda is grateful to the Ph.D. Grant CONICYT PFCHA/DOCTORADO BECAS CHILE/2017-72180157.Pérez-Ubeda, R.; Zotovic Stanisic, R.; Gutiérrez, SC. (2020). Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement. Applied Sciences. 10(12):1-24. https://doi.org/10.3390/app10124329S1241012Top Trends Robotics 2020—International Federation of Robotics https://ifr.org/ifr-press-releases/news/top-trends-robotics-2020Gaz, C., Magrini, E., & De Luca, A. (2018). A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics, 55, 234-247. doi:10.1016/j.mechatronics.2018.02.014Iglesias, I., Sebastián, M. A., & Ares, J. E. (2015). Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering, 132, 911-917. doi:10.1016/j.proeng.2015.12.577Perez-Ubeda, R., Gutierrez, S. C., Zotovic, R., & Lluch-Cerezo, J. (2019). Study of the application of a collaborative robot for machining tasks. Procedia Manufacturing, 41, 867-874. doi:10.1016/j.promfg.2019.10.009Spong, M. W. (1989). On the force control problem for flexible joint manipulators. IEEE Transactions on Automatic Control, 34(1), 107-111. doi:10.1109/9.8661Ren, T., Dong, Y., Wu, D., & Chen, K. (2019). Impedance control of collaborative robots based on joint torque servo with active disturbance rejection. Industrial Robot: the international journal of robotics research and application, 46(4), 518-528. doi:10.1108/ir-06-2018-0130Ajoudani, A., Tsagarakis, N. G., & Bicchi, A. (2017). Choosing Poses for Force and Stiffness Control. IEEE Transactions on Robotics, 33(6), 1483-1490. doi:10.1109/tro.2017.2708087Magrini, E., & De Luca, A. (2016). Hybrid force/velocity control for physical human-robot collaboration tasks. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros.2016.7759151Ahmad, S. (1993). Constrained motion (force/position) control of flexible joint robots. IEEE Transactions on Systems, Man, and Cybernetics, 23(2), 374-381. doi:10.1109/21.229451Calanca, A., & Fiorini, P. (2018). Understanding Environment-Adaptive Force Control of Series Elastic Actuators. IEEE/ASME Transactions on Mechatronics, 23(1), 413-423. doi:10.1109/tmech.2018.2790350Oh, S., & Kong, K. (2017). High-Precision Robust Force Control of a Series Elastic Actuator. IEEE/ASME Transactions on Mechatronics, 22(1), 71-80. doi:10.1109/tmech.2016.2614503Yin, H., Li, S., & Wang, H. (2016). Sliding mode position/force control for motion synchronization of a flexible-joint manipulator system with time delay. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554329Ma, Z., Hong, G.-S., Ang, M. H., Poo, A.-N., & Lin, W. (2018). A Force Control Method with Positive Feedback for Industrial Finishing Applications. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). doi:10.1109/aim.2018.8452689Huang, L., Ge, S. S., & Lee, T. H. (2006). Position/force control of uncertain constrained flexible joint robots. Mechatronics, 16(2), 111-120. doi:10.1016/j.mechatronics.2005.10.002Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4(3), 273-285. doi:10.1109/3516.789685Winkler, A., & Suchy, J. (2016). Explicit and implicit force control of an industrial manipulator — An experimental summary. 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). doi:10.1109/mmar.2016.7575081Neranon, P., & Bicker, R. (2016). Force/position control of a robot manipulator for human-robot interaction. Thermal Science, 20(suppl. 2), 537-548. doi:10.2298/tsci151005036nChen, S., Zhang, T., & Zou, Y. (2017). Fuzzy-Sliding Mode Force Control Research on Robotic Machining. Journal of Robotics, 2017, 1-8. doi:10.1155/2017/8128479Lin, H.-I., & Dubey, V. (2018). Design of an Adaptive Force Controlled Robotic Polishing System Using Adaptive Fuzzy-PID. Advances in Intelligent Systems and Computing, 825-836. doi:10.1007/978-3-030-01370-7_64Perez-Vidal, C., Gracia, L., Sanchez-Caballero, S., Solanes, J. E., Saccon, A., & Tornero, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing, 32(9), 848-857. doi:10.1080/0951192x.2019.1637026Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., & Ding, H. (2019). Contact force control and vibration suppression in robotic polishing with a smart end effector. Robotics and Computer-Integrated Manufacturing, 57, 391-403. doi:10.1016/j.rcim.2018.12.019Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011Xiao, C., Wang, Q., Zhou, X., Xu, Z., Lao, X., & Chen, Y. (2019). Hybrid Force/Position Control Strategy for Electromagnetic based Robotic Polishing Systems. 2019 Chinese Control Conference (CCC). doi:10.23919/chicc.2019.8865183Li, J., Zhang, T., Liu, X., Guan, Y., & Wang, D. (2018). A Survey of Robotic Polishing. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). doi:10.1109/robio.2018.8664890Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., & Dario, P. (2004). Compliance Control for an Anthropomorphic Robot with Elastic Joints: Theory and Experiments. Journal of Dynamic Systems, Measurement, and Control, 127(3), 321-328. doi:10.1115/1.1978911Han, D., Duan, X., Li, M., Cui, T., Ma, A., & Ma, X. (2017). Interaction Control for Manipulator with compliant end-effector based on hybrid position-force control. 2017 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2017.8015929Schindlbeck, C., & Haddadin, S. (2015). Unified passivity-based Cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139036Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451Volpe, R., & Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automatic Control, 38(11), 1634-1650. doi:10.1109/9.262033Zeng, G., & Hemami, A. (1997). An overview of robot force control. Robotica, 15(5), 473-482. doi:10.1017/s026357479700057xSalisbury, J. (1980). Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. doi:10.1109/cdc.1980.272026Chen, S.-F., & Kao, I. (2000). Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers. The International Journal of Robotics Research, 19(9), 835-847. doi:10.1177/02783640022067201Institute of Robotics and Mechatronics DLR Light Weight Robot III https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12464/#gallery/2916

    Behavioural Study of the Force Control Loop Used in a Collaborative Robot for Sanding Materials

    Full text link
    [EN] The rise of collaborative robots urges the consideration of them for different industrial tasks such as sanding. In this context, the purpose of this article is to demonstrate the feasibility of using collaborative robots in processing operations, such as orbital sanding. For the demonstration, the tools and working conditions have been adjusted to the capacity of the robot. Materials with different characteristics have been selected, such as aluminium, steel, brass, wood, and plastic. An inner/outer control loop strategy has been used, complementing the robot¿s motion control with an outer force control loop. After carrying out an explanatory design of experiments, it was observed that it is possible to perform the operation in all materials, without destabilising the control, with a mean force error of 0.32%. Compared with industrial robots, collaborative ones can perform the same sanding task with similar results. An important outcome is that unlike what might be thought, an increase in the applied force does not guarantee a better finish. In fact, an increase in the feed rate does not produce significant variation in the finish¿less than 0.02 m; therefore, the process is in a ¿saturation state¿ and it is possible to increase the feed rate to increase productivity.Rodrigo Perez-Ubeda is grateful to the Ph.D. Grant CONICYT PFCHA/Doctorado Becas Chile/2017-72180157 and the University of Antofagasta, Chile.Pérez Ubeda, R.; Gutiérrez, SC.; Zotovic Stanisic, R.; Perles, A. (2020). Behavioural Study of the Force Control Loop Used in a Collaborative Robot for Sanding Materials. Materials. 14(1):1-19. https://doi.org/10.3390/ma14010067S11914

    Delivery actuator for a transcervical sterilization device

    Get PDF
    The use of delivery systems in the human body for positioning and deploying implants, such as closure devices, dilation balloons, stents, coils and sterilization devices, are gaining more importance to preclude surgical incisions and general anesthesia. The majorities of the non-surgical medical devices are delivered in a low profile into human body form and subsequently require specialized operations for their deployment and release. An analogous procedure for permanent female sterilization is the transcervical approach that does not require either general anesthesia or surgical incision and uses a normal body passage. The objective of this paper is to detail the design, development and verification of an ergonomic actuator for a medical application. In particular, this actuator is designed for the deployment and release of an implant to achieve instant permanent female sterilization via the transcervical approach. This implant is deployed under hysteroscopic visualization and requires a sequence of rotary and linear operations for its deployment and release. More specifically, this manually operated actuator is a hand held device designed to transmit the required forces in a particular sequence to effect both implant deployment and release at a target location. In order to design the actuator and to investigate its mechanical behavior, a three-dimensional (3D) Computer Aided Design (CAD) model was developed and Finite Element Method (FEM) was used for simulations and optimization. Actuator validation was performed following a number of successful bench-top in-air deployments and in-vitro deployments in animal tissue and explanted human uteri. During these deployments it was observed that the actuator applied the required forces to the implant resulting in successful deployment. Initial results suggest that this actuator can be used single handedly during the deployment phase. The ongoing enhancement of this actuator is moving towards “first-in- man” clinical trials

    Low-density colloid centrifugation removes bacteria from boar semen doses after spiking with selected species

    Get PDF
    Single-layer centrifugation (SLC) with a low-density colloid is an efficient method for removing contaminating microorganisms from boar semen while recovering most spermatozoa from the original sample. This study tested the performance of this technique, using 50-ml tubes, by spiking commercial semen doses prepared without antibiotics with selected bacterial species followed by storage at 17 degrees C. The doses were spiked up to 102/ml CFU (colony forming units) of the bacteria Burkholderia ambifaria, Pseudomonas aeruginosa, and Staphylococcus sim-ulans. The semen was processed by SLC (15 ml of sample and 15 ml of colloid) with the colloid Porcicoll at 20% (P20) and 30% (P30), with a spiked control (CTL) and an unspiked control (CTL0), analyzing microbiology and sperm quality on days 0, 3 and 7. SLC completely removed B. ambifaria and S. simulans, considerably reducing P. aeruginosa and overall contamination (especially P30, similar to 104 CFU/ml of total contamination on day 7, median). Sperm viability was lower in P20 and P30 samples at day 0, with higher cytoplasmic ROS. Still, results were similar in all groups on day 3 and reversed on day 7, indicating a protective effect of SLC (possibly directly by removal of damaged sperm and indirectly because of lower bacterial contamination). Sperm chromatin was affected by the treatment (lower DNA fragmentation and chromatin decondensation) and storage (higher overall condensation on day 7 as per chromomycin A3 and monobromobimane staining). In conclusion, SLC with low-density colloids can remove most bacteria in a controlled contamination design while potentially improving sperm quality and long-term storage at practical temperatures

    The M4 Core Project with HST --- I. Overview and First-Epoch

    Full text link
    We present an overview of the ongoing Hubble Space Telescope large program GO-12911. The program is focused on the core of M4, the nearest Galactic globular cluster, and the observations are designed to constrain the number of binaries with massive companions (black holes, neutron stars, or white dwarfs) by measuring the ``wobble'' of the luminous (main-sequence) companion around the center of mass of the pair, with an astrometric precision of ~50 micro-arcseconds. The high spatial resolution and stable medium-band PSFs of WFC3/UVIS will make these measurements possible. In this work we describe: (i) the motivation behind this study, (ii) our observing strategy, (iii) the many other investigations enabled by this unique data set, and which of those our team is conducting, and (iv) a preliminary reduction of the first-epoch data-set collected on October 10, 2012.Comment: 25 pages, 14 figures (9 at low resolution), 3 tables. Published in: Astronomische Nachrichten, Volume 334, Issue 10, pages 1062-1085, December 2013. http://onlinelibrary.wiley.com/doi/10.1002/asna.201311911/abstrac

    M4 Core Project with HST - III. Search for variable stars in the primary field

    Get PDF
    We present the results of a photometric search for variable stars in the core of the Galactic globular cluster M4. The input data are a large and unprecedented set of deep Hubble Space Telescope WFC3 images (large program GO-12911; 120 orbits allocated), primarily aimed at probing binaries with massive companions by detecting their astrometric wobbles. Though these data were not optimised to carry out a time-resolved photometric survey, their exquisite precision, spatial resolution and dynamic range enabled us to firmly detect 38 variable stars, of which 20 were previously unpublished. They include 19 cluster-member eclipsing binaries (confirming the large binary fraction of M4), RR Lyrae, and objects with known X-ray counterparts. We improved and revised the parameters of some among published variables.Comment: 11 pages, 5 figures, 2 tables. Accepted for publication in MNRA

    Hierarchical Star Formation in Nearby LEGUS Galaxies

    Get PDF
    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in 7 galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.Comment: 9 pages, 4 figures, accepted for ApJ

    The properties, origin and evolution of stellar clusters in galaxy simulations and observations

    Get PDF
    We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback

    Candidate LBV stars in galaxy NGC 7793 found via HST photometry + MUSE spectroscopy

    Get PDF
    Only about 19 Galactic and 25 extragalactic bonafide luminous blue variables (LBVs) are known to date. This incomplete census prevents our understanding of this crucial phase of massive star evolution which leads to the formation of heavy binary black holes via the classical channel. With large samples of LBVs one could better determine the duration and maximum stellar luminosity which characterize this phase. We search for candidate LBVs (cLBVs) in a new galaxy, NGC 7793. For this purpose, we combine high spatial resolution images from two Hubble Space Telescope (HST) programs with optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE). By combining PSF-fitting photometry measured on F547M, F657N, and F814W images, with restrictions on point-like appearance (at HST resolution) and H α luminosity, we find 100 potential cLBVs, 36 of which fall in the MUSE fields. Five of the latter 36 sources are promising cLBVs which have MV ≤ −7 and a combination of: H α with a P-Cygni profile; no [O I]λ6300 emission; weak or no [O III]λ5007 emission; large [N II]/H α relative to H II regions; and [S II]λ6716/[S II]λ6731∼1⁠. It is not clear if these five cLBVs are isolated from O-type stars, which would favour the binary formation scenario of LBVs. Our study, which approximately covers one fourth of the optical disc of NGC 7793, demonstrates how by combining the above HST surveys with multi-object spectroscopy from 8-m class telescopes, one can efficiently find large samples of cLBVs in nearby galaxies
    corecore