15 research outputs found
Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice.
Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies
RESEARCH OF CHARACTERISTICS OF PROCESS NEUTRALIZATION OF ACID WASTEWATER BY LIME SLUDGE
Lime sludge which is generated in the industrial processes of water softening is a significant environmental and economic burden, due to increasingly stringent of national and international regulations relating to the management of waste streams. The high content of calcium carbonate in this material opens the possibility of its application in the processes of acidic waste water neutralization. In this paper, a research of characteristics of the process of neutralizing the acidity of water in terms of different initial pH value and flow regime, applying lime sludges which are generated in treatment of salt and fresh water, was conducted. Results of research showed that the initial pH value of water and the presence of NaCl have a significant effect on the solubility of calcium carbonate in the process of neutralization, while the examined flow regime (mixing speed of magnetic stirrer) had a negligible impact
RESEARCH OF CHARACTERISTICS OF PROCESS NEUTRALIZATION OF ACID WASTEWATER BY LIME SLUDGE
Lime sludge which is generated in the industrial processes of water softening is a significant environmental and economic burden, due to increasingly stringent of national and international regulations relating to the management of waste streams. The high content of calcium carbonate in this material opens the possibility of its application in the processes of acidic waste water neutralization. In this paper, a research of characteristics of the process of neutralizing the acidity of water in terms of different initial pH value and flow regime, applying lime sludges which are generated in treatment of salt and fresh water, was conducted. Results of research showed that the initial pH value of water and the presence of NaCl have a significant effect on the solubility of calcium carbonate in the process of neutralization, while the examined flow regime (mixing speed of magnetic stirrer) had a negligible impact
Differential effects of Vav-promoter-driven overexpression of BCLX and BFL1 on lymphocyte survival and B cell lymphomagenesis
Overexpression of BCLX and BFL1/A1 has been reported in various human malignancies and is associated with poor prognosis and drug resistance, identifying these prosurvival BCL2 family members as putative drug targets. We have generated transgenic mice that express human BFL1 or human BCLX protein throughout the haematopoietic system under the control of the Vav gene promoter. Haematopoiesis is normal in both the Vav-BFL1 and Vav-BCLX transgenic (TG) mice and susceptibility to spontaneous haematopoietic malignancies is not increased. Lymphoid cells from Vav-BCLX TG mice exhibit increased resistance to apoptosis in vitro while most blood cell types form Vav-BFL1 TG mice were poorly protected. Both transgenes significantly accelerated lymphomagenesis in Eμ-MYC TG mice and, surprisingly, the Vav-BFL1 transgene was the more potent. Unexpectedly, expression of transgenic BFL1 RNA and protein is significantly elevated in B lymphoid cells of Vav-BFL1/Eμ-MYC double-transgenic compared to Vav-BFL1 mice, even during the preleukaemic phase, providing a rationale for the potent synergy. In contrast, Vav-BCLX expression was not notably different. These mouse models of BFL1 and BCLX overexpression in lymphomas should be useful tools for the testing the efficacy of novel human BFL1- and BCLX-specific inhibitors
Repositioning T H cell polarization from single cytokines to complex help
When helper T (TH) cell polarization was initially described three decades ago, the TH cell universe grew dramatically. New subsets were described based on their expression of few specific cytokines. Beyond TH1 and TH2 cells, this led to the coining of various TH17 and regulatory (Treg) cell subsets as well as TH22, TH25, follicular helper (TFH), TH3, TH5 and TH9 cells. High-dimensional single-cell analysis revealed that a categorization of TH cells into a single-cytokine-based nomenclature fails to capture the complexity and diversity of TH cells. Similar to the simple nomenclature used to describe innate lymphoid cells (ILCs), we propose that TH cell polarization should be categorized in terms of the help they provide to phagocytes (type 1), to B cells, eosinophils and mast cells (type 2) and to non-immune tissue cells, including the stroma and epithelium (type 3). Studying TH cells based on their helper function and the cells they help, rather than phenotypic features such as individual analyzed cytokines or transcription factors, better captures TH cell plasticity and conversion as well as the breadth of immune responses in vivo
BFL1 modulates apoptosis at the membrane level through a bifunctional and multimodal mechanism showing key differences with BCLXL
BFL1 is a relatively understudied member of the BCL2 protein family which has been implicated in the pathogenesis andchemoresistance of a variety of human cancers, including hematological malignancies and solid tumours. BFL1 is generallyconsidered to have an antiapoptotic function, although its precise mode of action remains unclear. By quantitativelyanalyzing BFL1 action in synthetic membrane models and in cells, we found that BFL1 inhibits apoptosis through threedistinct mechanisms which are similar but not identical to those of BCLXL, the paradigmatic antiapoptotic BCL2 familyprotein. Strikingly, alterations in lipid composition during apoptosis activate a prodeath function of BFL1 that is based onnoncanonical oligomerization of the protein and breaching of the permeability barrier of the outer mitochondrial membrane(OMM). This lipid-triggered prodeath function of BFL1 is absent in BCLXL and also differs from that of the apoptoticeffector BAX, which sets it apart from other BCL2 family members. Ourfindings support a new model in which BFL1modulates apoptosis through a bifunctional and multimodal mode of action that is distinctly regulated by OMM lipidscompared to BCLXL.This work was supported by Grants BFU2011-28566 from the Ministerio de Economia y Competitividad and IT838-13 from Gobierno Vasco. HFR is a recipient of a predoctoral fellowship from the Ministerio de Educacion (Spain). We also thank to LE facility technician in the Achucarro Basque Center for Neuroscience for the support in STED experiments. Finally, we thank Dr. Frank Essmann and Prof. Klaus Schulze-Osthoff for providing the HCT116 BAX/BAK DKO cells and Prof. Jean Claude Martinou for HCT116 CL KO cells