1,165 research outputs found
Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks
The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances
Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks
The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances
Active Fault Tolerant Control of a Wind Farm System
In order to enhance the 'sustainability’ of offshore wind farms, thus skipping unplanned maintenance operations and costs, that can be important for offshore systems, the earlier management of faults represents the key point. Therefore, this work studies the development of an adaptive sustainable control scheme with application to a wind farm benchmark consisting of nine wind turbine systems. They are described via their nonlinear models, as well as the wind and wake effects among the wind turbines of the wind park. The fault tolerant control strategy uses the recursive estimation of the faults provided by nonlinear estimators designed via a nonlinear differential algebraic tool. This aspect of the study, together with the more straightforward solution based on a data-driven scheme, is the key issue when on-line applications are proposed for a viable implementation of the proposed solutions
Exact accelerating solitons in nonholonomic deformation of the KdV equation with two-fold integrable hierarchy
Recently proposed nonholonomic deformation of the KdV equation is solved
through inverse scattering method by constructing AKNS-type Lax pair. Exact and
explicit N-soliton solutions are found for the basic field and the deforming
function showing an unusual accelerated (decelerated) motion. A two-fold
integrable hierarchy is revealed, one with usual higher order dispersion and
the other with novel higher nonholonomic deformations.Comment: 7 pages, 2 figures, latex. Exact explicit exact N-soliton solutions
(through ISM) for KdV field u and deforming function w are included. Version
to be published in J. Phys.
A new integrable generalization of the Korteweg - de Vries equation
A new integrable sixth-order nonlinear wave equation is discovered by means
of the Painleve analysis, which is equivalent to the Korteweg - de Vries
equation with a source. A Lax representation and a Backlund self-transformation
are found of the new equation, and its travelling wave solutions and
generalized symmetries are studied.Comment: 13 pages, 2 figure
An external replication on the effects of test-driven development using a multi-site blind analysis approach
Context: Test-driven development (TDD) is an agile practice claimed to improve the quality of a software product, as well as the productivity of its developers. A previous study (i.e., baseline experiment) at the University of Oulu (Finland) compared TDD to a test-last development (TLD) approach through a randomized controlled trial. The results failed to support the claims. Goal: We want to validate the original study results by replicating it at the University of Basilicata (Italy), using a different design. Method: We replicated the baseline experiment, using a crossover design, with 21 graduate students. We kept the settings and context as close as possible to the baseline experiment. In order to limit researchers bias, we involved two other sites (UPM, Spain, and Brunel, UK) to conduct blind analysis of the data. Results: The Kruskal-Wallis tests did not show any significant difference between TDD and TLD in terms of testing effort (p-value = .27), external code quality (p-value = .82), and developers' productivity (p-value = .83). Nevertheless, our data revealed a difference based on the order in which TDD and TLD were applied, though no carry over effect. Conclusions: We verify the baseline study results, yet our results raises concerns regarding the selection of experimental objects, particularly with respect to their interaction with the order in which of treatments are applied. We recommend future studies to survey the tasks used in experiments evaluating TDD. Finally, to lower the cost of replication studies and reduce researchers' bias, we encourage other research groups to adopt similar multi-site blind analysis approach described in this paper.This research is supported in part by the Academy of Finland Project 278354
Negative Even Grade mKdV Hierarchy and its Soliton Solutions
In this paper we provide an algebraic construction for the negative even mKdV
hierarchy which gives rise to time evolutions associated to even graded Lie
algebraic structure. We propose a modification of the dressing method, in order
to incorporate a non-trivial vacuum configuration and construct a deformed
vertex operator for , that enable us to obtain explicit and
systematic solutions for the whole negative even grade equations
Hardware-In-The-Loop Assessment of a Fault Tolerant Fuzzy Control Scheme for an Offshore Wind Farm Simulator
To enhance both the safety and the efficiency of offshore wind park systems, faults must be accommodated in their earlier occurrence, in order to avoid costly unplanned maintenance. Therefore, this paper aims at implementing a fault tolerant control strategy by means of a data-driven approach relying on fuzzy logic. In particular, fuzzy modelling is considered here as it enables to approximate unknown nonlinear relations, while managing uncertain measurements and disturbance. On the other hand, the model of the fuzzy controller is directly estimated from the input-output signals acquired from the wind farm system, with fault tolerant capabilities. In general, the use of purely nonlinear relations and analytic methods would require more complex design tools. The design is therefore enhanced by the use of fuzzy model prototypes obtained via a data-driven approach, thus representing the key point if real- time solutions have to implement the proposed fault tolerant control strategy. Finally, a high- fidelity simulator relying on a hardware-in-the-loop tool is exploited to verify and validate the reliability and robustness characteristics of the developed methodology also for on-line and more realistic implementations
Software defect prediction: do different classifiers find the same defects?
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio
- …
