21 research outputs found

    Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment

    Get PDF
    The soil dwelling Gram-negative bacterium Burkholderia pseudomallei is the cause of melioidosis, a serious human infection that occurs in Southeast Asia and northern Australia. The purpose of this study was to evaluate the population genetic structure of B. pseudomallei in the environment. To achieve this, we undertook soil sampling and culture for the presence of B. pseudomallei in 100 equally spaced points within an area of disused land in northeast Thailand, and undertook detailed genotyping of primary plate colonies isolated from three independent sampling points. Our results demonstrated that multiple B. pseudomallei genotypes were present within a single soil sample, and that different genotypes were present at independent but nearby sampling points. The B. pseudomallei genetic population was unevenly distributed within a given sample, with a predominant genotype co-existing with several genotypes present as a minority population. We discuss the implications of this structuring of genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies

    Genomic Islands as a Marker to Differentiate between Clinical and Environmental Burkholderia pseudomallei

    Get PDF
    Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil

    Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus Associated with Pediatric Infection in Cambodia

    Get PDF
    BACKGROUND: The incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection is rising in the developed world but appears to be rare in developing countries. One explanation for this difference is that resource poor countries lack the diagnostic microbiology facilities necessary to detect the presence of CA-MRSA carriage and infection. METHODOLOGY AND PRINCIPAL FINDINGS: We developed diagnostic microbiology capabilities at the Angkor Hospital for Children, Siem Reap, western Cambodia in January 2006 and in the same month identified a child with severe community-acquired impetigo caused by CA-MRSA. A study was undertaken to identify and describe additional cases presenting between January 2006 and December 2007. Bacterial isolates underwent molecular characterization using multilocus sequence typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for the presence of the genes encoding Panton-Valentine Leukocidin (PVL). Seventeen children were identified with CA-MRSA infection, of which 11 had skin and soft tissue infection and 6 had invasive disease. The majority of cases were unrelated in time or place. Molecular characterization identified two independent MRSA clones; fifteen isolates were sequence type (ST) 834, SCCmec type IV, PVL gene-negative, and two isolates were ST 121, SCCmec type V, PVL gene-positive. CONCLUSIONS: This represents the first ever report of MRSA in Cambodia, spread of which would pose a significant threat to public health. The finding that cases were mostly unrelated in time or place suggests that these were sporadic infections in persons who were CA-MRSA carriers or contacts of carriers, rather than arising in the context of an outbreak

    Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis

    Get PDF
    Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum

    High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia

    Get PDF
    BACKGROUND: Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that essential genes may be highly conserved within a group of evolutionary closely related organisms. Using a bioinformatics approach we determined that the core genome of the order Burkholderiales consists of 649 genes. All but two of these identified genes were located on chromosome 1 of Burkholderia cenocepacia. Although many of the 649 core genes of Burkholderiales have been shown to be essential in other bacteria, we were also able to identify a number of novel essential genes present mainly, or exclusively, within this order. The essentiality of some of the core genes, including the known essential genes infB, gyrB, ubiB, and valS, as well as the so far uncharacterized genes BCAL1882, BCAL2769, BCAL3142 and BCAL3369 has been confirmed experimentally in B. cenocepacia. CONCLUSIONS/SIGNIFICANCE: We report on the identification of essential genes using a novel bioinformatics strategy and provide bioinformatics and experimental evidence that the large majority of the identified genes are indeed essential. The essential genes identified here may represent valuable targets for the development of novel antimicrobials and their detailed study may shed new light on the functions required to support life

    Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) Reveals Phylogenetic Relationships in Burkholderia pseudomallei and Its Near-Neighbors

    Get PDF
    Length polymorphisms within the 16S-23S ribosomal DNA internal transcribed spacer (ITS) have been described as stable genetic markers for studying bacterial phylogenetics. In this study, we used these genetic markers to investigate phylogenetic relationships in Burkholderia pseudomallei and its near-relative species. B. pseudomallei is known as one of the most genetically recombined bacterial species. In silico analysis of multiple B. pseudomallei genomes revealed approximately four homologous rRNA operons and ITS length polymorphisms therein. We characterized ITS distribution using PCR and analyzed via a high-throughput capillary electrophoresis in 1,191 B. pseudomallei strains. Three major ITS types were identified, two of which were commonly found in most B. pseudomallei strains from the endemic areas, whereas the third one was significantly correlated with worldwide sporadic strains. Interestingly, mixtures of the two common ITS types were observed within the same strains, and at a greater incidence in Thailand than Australia suggesting that genetic recombination causes the ITS variation within species, with greater recombination frequency in Thailand. In addition, the B. mallei ITS type was common to B. pseudomallei, providing further support that B. mallei is a clone of B. pseudomallei. Other B. pseudomallei near-neighbors possessed unique and monomorphic ITS types. Our data shed light on evolutionary patterns of B. pseudomallei and its near relative species

    The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    Get PDF
    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence
    corecore