61 research outputs found

    Identification and categorisation of safety issues for ESNII reactor concepts. Part I: Common phenomena related to materials

    Get PDF
    International audience; With the aim to develop a joint proposal for a harmonised European methodology for safety assessment of advanced reactors with fast neutron spectrum, SARGEN-IV (Safety Assessment for Reactors of Gen IV) Euratom coordination action project gathered together twenty-two partners' safety experts from twelve EU Member States. The group consisted of eight European Technical Safety Organisations involved in the European Technical Safety Organisation Network (ETSON), European Commission's Joint Research Centre (JRC), system designers, industrial vendors as well as research and development (RandD) organisations. To support the methodology development, key safety features of four fast neutron spectrum reactor concepts considered in Deployment Strategy of the Sustainable Nuclear Energy Technology Platform (SNETP) were reviewed. In particular, outcomes from running European Sustainable Nuclear Industrial Initiative (ESNII) system projects and related Euratom collaborative projects for Sodium-cooled Fast Reactors, Lead-cooled Fast Reactors, Gas-cooled Fast Reactors, and the lead-bismuth eutectic cooled Fast Spectrum Transmutation Experimental Facility were gathered and critically assessed. To allow a consistent build-up of safety architecture for the ESNII reactor concepts, the safety issues were further categorised to identify common phenomena related to materials. Outcomes of the present work also provided guidance for the identification and prioritisation of further RandD needs respective to the identified safety issues. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense

    Identification and categorisation of safety issues for ESNII reactor concepts. Part I: Common phenomena related to materials

    Get PDF
    International audienceWith the aim to develop a joint proposal for a harmonised European methodology for safety assessment of advanced reactors with fast neutron spectrum, SARGEN-IV (Safety Assessment for Reactors of Gen IV) Euratom coordination action project gathered together twenty-two partners' safety experts from twelve EU Member States. The group consisted of eight European Technical Safety Organisations involved in the European Technical Safety Organisation Network (ETSON), European Commission's Joint Research Centre (JRC), system designers, industrial vendors as well as research and development (RandD) organisations. To support the methodology development, key safety features of four fast neutron spectrum reactor concepts considered in Deployment Strategy of the Sustainable Nuclear Energy Technology Platform (SNETP) were reviewed. In particular, outcomes from running European Sustainable Nuclear Industrial Initiative (ESNII) system projects and related Euratom collaborative projects for Sodium-cooled Fast Reactors, Lead-cooled Fast Reactors, Gas-cooled Fast Reactors, and the lead-bismuth eutectic cooled Fast Spectrum Transmutation Experimental Facility were gathered and critically assessed. To allow a consistent build-up of safety architecture for the ESNII reactor concepts, the safety issues were further categorised to identify common phenomena related to materials. Outcomes of the present work also provided guidance for the identification and prioritisation of further RandD needs respective to the identified safety issues. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense

    Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers

    No full text
    © 2016 Elsevier B.V. The development of anticancer drug delivery systems which retain or enhance the cytotoxic properties of the drug to tumorous tissues, while reducing toxicity to other organs is of key importance. We investigated different poly(methacrylic acid)-g-poly(ethyleneglycol methacrylate) polymers as in situ coating agents for magnetite nanocrystallites. The obtained magnetic nano-assemblies were in turn thoroughly characterized for their structural, colloidal and physicochemical properties (drug loading capacity/release, magnetic field triggered drug release, cell uptake and localization) in order to select the best performing system. With the focus on in vivo validation of such magnetic drug delivery systems for first time, we selected cisplatin as the drug, since it is a potent anticancer agent which exhibits serious side effects due to lack of selectivity. In addition, cisplatin would offer facile determination of the metal content in the animal tissues for biodistribution studies. Alongside post-mortem Pt determination in the tissues, the biodistribution of the drug nanocarriers was also monitored in real time with PET-CT (positron emission tomography/computed tomography) with and without the presence of magnetic field gradients; using a novel chelator-free method, the nanoparticles were radiolabeled with 68 Ga without having to alter their structure with chemical modifications for conjugation of radiochelators. The ability to be radiolabeled in such a straightforward but very robust way, along with their measured high MRI response, renders them attractive for dual imaging, which is an important functionality for translational investigations. Their anticancer properties were evaluated in vitro and in vivo, in a cisplatin resistant HT-29 human colon adenocarcinoma model, with and without the presence of magnetic field gradients. Enhanced anticancer efficacy and reduced toxicity was recorded for the cisplatin-loaded nanocarriers in comparison to the free cisplatin, particularly when a magnetic field gradient was applied at the tumor site. Post mortem and real-time tissue distribution studies did not reveal increased cisplatin concentration in the tumor site, suggesting that the enhanced anticancer efficacy of the cisplatin-loaded nanocarriers is driven by mechanisms other than increased cisplatin accumulation in the tumors
    corecore