29 research outputs found
Host Control of Malaria Infections: Constraints on Immune and Erythropoeitic Response Kinetics
The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC) populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection) to those with compensatory erythropoiesis (boosted RBC production) or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time ≤2.4 h) were associated with lower parasitemia and less severe anemia. Thus tight synchronization in asexual parasite development might help control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating) clinically, this suggests that P. falciparum adaptations for countering or evading immune responses are more effective than those of P. vivax
Intensity and Dynamics of Anti-SARS-CoV-2 Immune Responses after BNT162b2 mRNA Vaccination: Implications for Public Health Vaccination Strategies
The aim of our study was to investigate the immunogenicity of the BNT162b2 vaccination according to the age and medical status of vaccinated individuals. A total of 511 individuals were enrolled (median age: 54.0 years, range: 19–105); 509 of these individuals (99.6%) received two doses of BNT162b2 at an interval of 21 days. IgG and IgA responses were evaluated on days 21, 42, 90, and 180 after the first dose with chemiluminescent microparticle and ELISA assays. The cell-mediated immune responses were assessed by an automated interferon-gamma release assay. We demonstrated positive antibody responses after vaccination for the majority of enrolled participants, although waning of IgG and IgA titers was also observed over time. We further observed that the intensity of humoral responses was positively correlated with increased age and prior COVID-19 infection (either before or after the first vaccination). Moreover, we found that only a medical history of autoimmune disease could affect the intensity of IgA and IgG responses (3 weeks after the primary and secondary immunization, respectively), while development of systemic adverse reactions after the second vaccination dose was significantly associated with the height of IgG responses. Finally, we identified a clear correlation between humoral and cellular responses, suggesting that the study of cellular responses is not required as a routine laboratory test after vaccination. Our results provide useful information about the immunogenicity of COVID-19 vaccination with significant implications for public health vaccination strategies. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Intensity and Dynamics of Anti-SARS-CoV-2 Immune Responses after BNT162b2 mRNA Vaccination: Implications for Public Health Vaccination Strategies
The aim of our study was to investigate the immunogenicity of the BNT162b2 vaccination according to the age and medical status of vaccinated individuals. A total of 511 individuals were enrolled (median age: 54.0 years, range: 19–105); 509 of these individuals (99.6%) received two doses of BNT162b2 at an interval of 21 days. IgG and IgA responses were evaluated on days 21, 42, 90, and 180 after the first dose with chemiluminescent microparticle and ELISA assays. The cell-mediated immune responses were assessed by an automated interferon-gamma release assay. We demonstrated positive antibody responses after vaccination for the majority of enrolled participants, although waning of IgG and IgA titers was also observed over time. We further observed that the intensity of humoral responses was positively correlated with increased age and prior COVID-19 infection (either before or after the first vaccination). Moreover, we found that only a medical history of autoimmune disease could affect the intensity of IgA and IgG responses (3 weeks after the primary and secondary immunization, respectively), while development of systemic adverse reactions after the second vaccination dose was significantly associated with the height of IgG responses. Finally, we identified a clear correlation between humoral and cellular responses, suggesting that the study of cellular responses is not required as a routine laboratory test after vaccination. Our results provide useful information about the immunogenicity of COVID-19 vaccination with significant implications for public health vaccination strategies. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Environmental audits and process flow mapping to assess management of solid waste and wastewater from a healthcare facility: an Italian case study
In Europe, there are an increasing number of policy and legislative drivers for a more sustainable approach to the management of natural resources as well as for the mitigation of environmental health risks. However, despite significant progress in recent years, there is still some way to go to achieve circularity of process, as well as risk mitigation within organisations. Using a case study of the Gardone Val Trompia hospital in northern Italy, this manuscript offers a novel holistic examination of strategies to enhance resource efficiency and environmental health within a key sector, i.e. the healthcare sector. Through the use of environmental audits and process flow mapping, trends in waste and wastewater arisings and the associated financial and environmental costs and risks were identified. Recommendations for developing more resource efficient approaches as well as mitigating the environmental and public health risks are suggested. These include strategies for improved resource efficiency (including reduction in the hazardous waste) and reduced environmental impacts during the containment, transport and treatment of the waste