84 research outputs found

    Species versus gene selection

    Get PDF

    Population genetics and the Cretaceous extinction

    Get PDF

    Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations

    Get PDF
    A phenotypic classification of trident pigmentation allowed the characterization ol any natural population by a pigmentation score, ranging from 0 to 3. After some training, independent observers could produce very similar score values. Growth temperature influences pigmentation intensity and the response curves exhibit a U-shape, with a minimum at about 25 "C. For the description of natural populations, 2 different growth temperatures, 17 °C and 25 °C were chosen. Crosses between a dark French strain and a light Afrotropical strain produced intermediate offspring, but a clear maternal effect differentiated the reciprocal Fl’s. Numerous populations from various part of the world were investigated and results arranged according to the latitude. For temperate populations collected between 34 and 48 ° of latitude a steep cline was observed (pigmentation being much more darker in high latitude) suggesting an adaptive pressure on this phenotype: environmental factors which may explain this cline being temperature, insolation and desiccation. In tropical populations on the other hand a large variability was observed but without any relation to latitude

    Attitudes and practices in the laboratory monitoring of conventional synthetic disease modifying anti-rheumatic drugs by rheumatologists and rheumatology trainees

    Get PDF
    Published online: 17 October 2022Objectives: There is scant research about laboratory monitoring in people taking conventional synthetic diseasemodifying anti-rheumatic drugs (csDMARDs) for rheumatic disease. Our objective was to conduct a scoping study to assess the range of current attitudes and the variation in practice of laboratory monitoring of csDMARDs by rheumatologists and trainees. Methods: Australian and overseas rheumatologists or trainees were invited through newsletter, Twitter and personal e-mail, to complete an anonymous online survey between 1 February and 22 March 2021. Questions focused on laboratory tests requested by csDMARD prescribed, frequency/pattern of monitoring, influence of additional factors and combination therapy, actions in response to abnormal tests, and attitudes to monitoring frequencies. Results were presented descriptively and analysed using linear and logistic regression. Results: There were 221 valid responses. Most respondents were from Australia (n = 53, 35%) followed by the US (n = 39, 26%), with a slight preponderance of women (n = 84, 56%), ≥ 11 years in rheumatology practice (n = 83, 56%) and in mostly public practice (n = 79, 53%). Respondents had a wide variation in the frequency and scheduling of tests. In general, respondents reported increasing monitoring frequency if patients had numerous comorbidities or if both methotrexate and leflunomide were being taken concurrently. There was a wide variety of responses to abnormal monitoring results and 27 (40%) considered that in general, monitoring tests are performed too frequently. Conclusions: The results demonstrated a wide variation in the frequency of testing, factors that should influence this, and what responses to abnormal test results are appropriate, indicates a likely lack of evidence and the need to define the risks, benefits and costs of different csDMARD monitoring regimens.James J. Tsakas, David F. L. Liew, Cameron L. Adams, Catherine L. Hill, Susanna Proudman, Samuel Whittle, Rachelle Buchbinder, and Philip C. Robinso

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought

    Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae

    Get PDF
    Entomopathogenic fungi are potential biological control agents of mosquitoes. Our group observed that not all mosquitoes were equally susceptible to fungal infection and observed significant differences in virulence of different spore types. Conidiospores and blastospores were tested against Culex quinquefasciatus larvae. Blastospores are normally considered more virulent than conidia as they form germ tubes and penetrate the host integument more rapidly than conidia. However, when tested against Cx. quinquefasciatus, blastospores were less virulent than conidia. This host-fungus interaction was studied by optical, electron and atomic force microscopy (AFM). Furthermore, host immune responses and specific gene expression were investigated. Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores did not readily adhere to Culex larval integument and the main route of infection was through the gut. Adhesion forces between blastospores and Culex cuticle were significantly lower than for other insects. Larvae challenged with blastospores showed enhanced immune responses, with increased levels of phenoloxidase, glutathione-S-transferase, esterase, superoxide dismutase and lipid peroxidase activity. Interestingly, M. brunneum pathogenicity/stress-related genes were all down-regulated in blastospores exposed to Culex. Conversely, when conidia were exposed to Culex, the pathogenicity genes involved in adhesion or cuticle degradation were up-regulated. Delayed host mortality following blastospore infection of Culex was probably due to lower adhesion rates of blastospores to the cuticle and enhanced host immune responses deployed to counter infection. The results here show that subtle differences in host-pathogen interactions can be responsible for significant changes in virulence when comparing mosquito species, having important consequences for biological control strategies and the understanding of pathogenicity processes

    Urinary Transforming Growth Factor-beta 1 as a marker of response to immunosuppressive treatment, in patients with crescentic nephritis

    Get PDF
    BACKGROUND: Crescentic nephritis is characterized by formation of cellular crescents that soon become fibrotic and result in irreversible damage, unless an effective immunosuppressive therapy is rapidly commenced. TGF-β(1 )is involved in the development of crescents through various pathways. The aim of this study was to identify whether the determination of urinary TGF-β(1 )levels in patients with crescentic nephritis could be used as a marker of response to treatment. METHODS: Fifteen patients with crescentic nephritis were included in the study. The renal expression of TGF-β(1 )was estimated in biopsy sections by immunohistochemistry and urinary TGF-β(1 )levels were determined by quantitative sandwich enzyme immunoassay (EIA). TGF-β(1 )levels were determined at the time of renal biopsy, before the initiation of immunosuppressive treatment (corticosteroids, cyclophosphamide and plasma exchange). Twelve patients with other types of proliferative glomerulonephritis and ten healthy subjects were used as controls. RESULTS: Improvement of renal function with immunosuppressive therapy was observed in 6 and stabilization in 4 patients (serum creatinine from 3.2 ± 1.5 to 1.4 ± 0.1 mg/dl and from 4.4 ± 1.2 to 4.1 ± 0.6 mg/dl, respectively). In 5 patients, with severe impairment of renal function who started on dialysis, no improvement was noted. The main histological feature differentiating these 5 patients from others with improved or stabilized renal function was the percentage patients with poor response to treatment were the percentage of glomeruli with crescents and the presence of ruptured Bowman's capsule and glomerular necrosis. Urinary TGF-β(1 )levels were significantly higher in patients who showed no improvement of renal function with immunosuppressive therapy (930 ± 126 ng/24 h vs. 376 ± 84 ng/24 h, p < 0.01). TGF-β(1 )was identified in crescents and tubular epithelial cells, whereas a significant correlation of TGF-β(1 )immunostaining with the presence of fibrocellular cresents was observed (r = 0.531, p < 0,05). CONCLUSION: Increased TGF-β(1 )renal expression and urinary excretion that is related to the response to immunosuppressive therapy was observed in patients with crescentic nephritis. Evaluation of urinary TGF-β(1 )levels may be proved a useful marker of clinical outcome in patients with crescentic nephritis

    Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence

    Get PDF
    Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control
    • …
    corecore