839 research outputs found

    Regularity properties of distributions through sequences of functions

    Get PDF
    We give necessary and sufficient criteria for a distribution to be smooth or uniformly H\"{o}lder continuous in terms of approximation sequences by smooth functions; in particular, in terms of those arising as regularizations (Tϕn)(T\ast\phi_{n}).Comment: 10 page

    Polyharmonic approximation on the sphere

    Full text link
    The purpose of this article is to provide new error estimates for a popular type of SBF approximation on the sphere: approximating by linear combinations of Green's functions of polyharmonic differential operators. We show that the LpL_p approximation order for this kind of approximation is σ\sigma for functions having LpL_p smoothness σ\sigma (for σ\sigma up to the order of the underlying differential operator, just as in univariate spline theory). This is an improvement over previous error estimates, which penalized the approximation order when measuring error in LpL_p, p>2 and held only in a restrictive setting when measuring error in LpL_p, p<2.Comment: 16 pages; revised version; to appear in Constr. Appro

    Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

    Get PDF
    This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω)H^s(\Omega) and H~s(Ω)\widetilde{H}^s(\Omega), for sRs\in \mathbb{R} and an open ΩRn\Omega\subset \mathbb{R}^n. We exhibit examples in one and two dimensions of sets Ω\Omega for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω\Omega is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large

    Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise

    Full text link
    The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by L\'evy white noise "obtained by subordination of a Gaussian white noise". Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general \cadlag modifications. General results are applied to equations with fractional Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already been publishe

    A Probabilistic proof of the breakdown of Besov regularity in LL-shaped domains

    Full text link
    {We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in LL-shaped domains. In particular, we obtain (probabilistic) integral representations for the solution. We also recover Grisvard's classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale

    Local regularity for fractional heat equations

    Full text link
    We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set ΩRN\Omega\subset\mathbb{R}^N. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756

    On thin plate spline interpolation

    Full text link
    We present a simple, PDE-based proof of the result [M. Johnson, 2001] that the error estimates of [J. Duchon, 1978] for thin plate spline interpolation can be improved by h1/2h^{1/2}. We illustrate that H{\mathcal H}-matrix techniques can successfully be employed to solve very large thin plate spline interpolation problem

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains DRnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    Besov priors for Bayesian inverse problems

    Get PDF
    We consider the inverse problem of estimating a function uu from noisy, possibly nonlinear, observations. We adopt a Bayesian approach to the problem. This approach has a long history for inversion, dating back to 1970, and has, over the last decade, gained importance as a practical tool. However most of the existing theory has been developed for Gaussian prior measures. Recently Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct Besov prior measures, based on wavelet expansions with random coefficients, and used these prior measures to study linear inverse problems. In this paper we build on this development of Besov priors to include the case of nonlinear measurements. In doing so a key technical tool, established here, is a Fernique-like theorem for Besov measures. This theorem enables us to identify appropriate conditions on the forward solution operator which, when matched to properties of the prior Besov measure, imply the well-definedness and well-posedness of the posterior measure. We then consider the application of these results to the inverse problem of finding the diffusion coefficient of an elliptic partial differential equation, given noisy measurements of its solution.Comment: 18 page
    corecore