839 research outputs found
Regularity properties of distributions through sequences of functions
We give necessary and sufficient criteria for a distribution to be smooth or
uniformly H\"{o}lder continuous in terms of approximation sequences by smooth
functions; in particular, in terms of those arising as regularizations
.Comment: 10 page
Polyharmonic approximation on the sphere
The purpose of this article is to provide new error estimates for a popular
type of SBF approximation on the sphere: approximating by linear combinations
of Green's functions of polyharmonic differential operators. We show that the
approximation order for this kind of approximation is for
functions having smoothness (for up to the order of the
underlying differential operator, just as in univariate spline theory). This is
an improvement over previous error estimates, which penalized the approximation
order when measuring error in , p>2 and held only in a restrictive setting
when measuring error in , p<2.Comment: 16 pages; revised version; to appear in Constr. Appro
Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples
This paper provides an overview of interpolation of Banach and Hilbert
spaces, with a focus on establishing when equivalence of norms is in fact
equality of norms in the key results of the theory. (In brief, our conclusion
for the Hilbert space case is that, with the right normalisations, all the key
results hold with equality of norms.) In the final section we apply the Hilbert
space results to the Sobolev spaces and
, for and an open . We exhibit examples in one and two dimensions of sets
for which these scales of Sobolev spaces are not interpolation scales. In the
cases when they are interpolation scales (in particular, if is
Lipschitz) we exhibit examples that show that, in general, the interpolation
norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio
of these two norms can be arbitrarily large
Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise
The paper is concerned with spatial and time regularity of solutions to
linear stochastic evolution equation perturbed by L\'evy white noise "obtained
by subordination of a Gaussian white noise". Sufficient conditions for spatial
continuity are derived. It is also shown that solutions do not have in general
\cadlag modifications. General results are applied to equations with fractional
Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already
been publishe
A Probabilistic proof of the breakdown of Besov regularity in -shaped domains
{We provide a probabilistic approach in order to investigate the smoothness
of the solution to the Poisson and Dirichlet problems in -shaped domains. In
particular, we obtain (probabilistic) integral representations for the
solution. We also recover Grisvard's classic result on the angle-dependent
breakdown of the regularity of the solution measured in a Besov scale
Local regularity for fractional heat equations
We prove the maximal local regularity of weak solutions to the parabolic
problem associated with the fractional Laplacian with homogeneous Dirichlet
boundary conditions on an arbitrary bounded open set
. Proofs combine classical abstract regularity
results for parabolic equations with some new local regularity results for the
associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756
On thin plate spline interpolation
We present a simple, PDE-based proof of the result [M. Johnson, 2001] that
the error estimates of [J. Duchon, 1978] for thin plate spline interpolation
can be improved by . We illustrate that -matrix
techniques can successfully be employed to solve very large thin plate spline
interpolation problem
On the Fourier transform of the characteristic functions of domains with -smooth boundary
We consider domains with -smooth boundary and
study the following question: when the Fourier transform of the
characteristic function belongs to ?Comment: added two references; added footnotes on pages 6 and 1
Well-posedness of Hydrodynamics on the Moving Elastic Surface
The dynamics of a membrane is a coupled system comprising a moving elastic
surface and an incompressible membrane fluid. We will consider a reduced
elastic surface model, which involves the evolution equations of the moving
surface, the dynamic equations of the two-dimensional fluid, and the
incompressible equation, all of which operate within a curved geometry. In this
paper, we prove the local existence and uniqueness of the solution to the
reduced elastic surface model by reformulating the model into a new system in
the isothermal coordinates. One major difficulty is that of constructing an
appropriate iterative scheme such that the limit system is consistent with the
original system.Comment: The introduction is rewritte
Besov priors for Bayesian inverse problems
We consider the inverse problem of estimating a function from noisy,
possibly nonlinear, observations. We adopt a Bayesian approach to the problem.
This approach has a long history for inversion, dating back to 1970, and has,
over the last decade, gained importance as a practical tool. However most of
the existing theory has been developed for Gaussian prior measures. Recently
Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct
Besov prior measures, based on wavelet expansions with random coefficients, and
used these prior measures to study linear inverse problems. In this paper we
build on this development of Besov priors to include the case of nonlinear
measurements. In doing so a key technical tool, established here, is a
Fernique-like theorem for Besov measures. This theorem enables us to identify
appropriate conditions on the forward solution operator which, when matched to
properties of the prior Besov measure, imply the well-definedness and
well-posedness of the posterior measure. We then consider the application of
these results to the inverse problem of finding the diffusion coefficient of an
elliptic partial differential equation, given noisy measurements of its
solution.Comment: 18 page
- …
