1,255 research outputs found
Strain Hardening in Polymer Glasses: Limitations of Network Models
Simulations are used to examine the microscopic origins of strain hardening
in polymer glasses. While traditional entropic network models can be fit to the
total stress, their underlying assumptions are inconsistent with simulation
results. There is a substantial energetic contribution to the stress that rises
rapidly as segments between entanglements are pulled taut. The thermal
component of stress is less sensitive to entanglements, mostly irreversible,
and directly related to the rate of local plastic arrangements. Entangled and
unentangled chains show the same strain hardening when plotted against the
microscopic chain orientation rather than the macroscopic strain.Comment: 4 pages, 3 figure
Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening
A simple theory for glassy polymeric mechanical response which accounts for
large scale chain relaxation is presented. It captures the crossover from
perfect-plastic response to strong strain hardening as the degree of
polymerization increases, without invoking entanglements. By relating
hardening to interactions on the scale of monomers and chain segments, we
correctly predict its magnitude. Strain activated relaxation arising from the
need to maintain constant chain contour length reduces the dependence of
the characteristic relaxation time by a factor during
active deformation at strain rate . This prediction is consistent
with results from recent experiments and simulations, and we suggest how it may
be further tested experimentally.Comment: The theoretical treatment of the mechanical response has been
significantly revised, and the arguments for coherent relaxation during
active deformation made more transparen
Optimized cross-slot flow geometry for microfluidic extension rheometry
A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model
Smectic-C tilt under shear in Smectic-A elastomers
Stenull and Lubensky [Phys. Rev. E {\bf 76}, 011706 (2007)] have argued that
shear strain and tilt of the director relative to the layer normal are coupled
in smectic elastomers and that the imposition of one necessarily leads to the
development of the other. This means, in particular, that a Smectic-A elastomer
subjected to a simple shear will develop Smectic-C-like tilt of the director.
Recently, Kramer and Finkelmann [arXiv:0708.2024, Phys. Rev. E {\bf 78}, 021704
(2008)] performed shear experiments on Smectic-A elastomers using two different
shear geometries. One of the experiments, which implements simple shear,
produces clear evidence for the development of Smectic-C-like tilt. Here, we
generalize a model for smectic elastomers introduced by Adams and Warner [Phys.
Rev. E {\bf 71}, 021708 (2005)] and use it to study the magnitude of
Smectic-C-like tilt under shear for the two geometries investigated by Kramer
and Finkelmann. Using reasonable estimates of model parameters, we estimate the
tilt angle for both geometries, and we compare our estimates to the
experimental results. The other shear geometry is problematic since it
introduces additional in-plane compressions in a sheet-like sample, thus
inducing instabilities that we discuss.Comment: 8 pages, 5 figure
Dating of the oldest continental sediments from the Himalayan foreland basin
A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated
Goldstone fluctuations in the amorphous solid state
Goldstone modes in the amorphous solid state, resulting from the spontaneous
breaking of translational symmetry due to random localisation of particles, are
discussed. Starting from a microscopic model with quenched disorder, the broken
symmetry is identified to be that of relative translations of the replicas.
Goldstone excitations, corresponding to pure shear deformations, are
constructed from long wavelength distortions of the order parameter. The
elastic free energy is computed, and it is shown that Goldstone fluctuations
destroy localisation in two spatial dimensions, yielding a two-dimensional
amorphous solid state characterised by power-law correlations.Comment: 7 pages, 2 figure
Supersymmetry solution for finitely extensible dumbbell model
Exact relaxation times and eigenfunctions for a simple mechanical model of
polymer dynamics are obtained using supersymmetry methods of quantum mechanics.
The model includes the finite extensibility of the molecule and does not make
use of the self-consistently averaging approximation. The finite extensibility
reduces the relaxation times when compared to a linear force. The linear
viscoelastic behaviour is obtained in the form of the ``generalized Maxwell
model''. Using these results, a numerical integration scheme is proposed in the
presence of a given flow kinematics.Comment: 5 pages, 2 figure
Strain-dependent localization, microscopic deformations, and macroscopic normal tensions in model polymer networks
We use molecular dynamics simulations to investigate the microscopic and
macroscopic response of model polymer networks to uniaxial elongations. By
studying networks with strands lengths ranging from to 200 we cover
the full crossover from cross-link to entanglement dominated behavior. Our
results support a recent version of the tube model which accounts for the
different strain dependence of chain localization due to chemical cross-links
and entanglements
A Model for the Elasticity of Compressed Emulsions
We present a new model to describe the unusual elastic properties of
compressed emulsions. The response of a single droplet under compression is
investigated numerically for different Wigner-Seitz cells. The response is
softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective inter-droplet potential which
is used to determine the elastic response of a monodisperse collection of
disordered droplets as a function of volume fraction. Our results are in
excellent agreement with recent experiments. This suggests that anharmonicity,
together with disorder, are responsible for the quasi-linear increase of
and observed at .Comment: RevTeX with psfig-included figures and a galley macr
- …
