Stenull and Lubensky [Phys. Rev. E {\bf 76}, 011706 (2007)] have argued that
shear strain and tilt of the director relative to the layer normal are coupled
in smectic elastomers and that the imposition of one necessarily leads to the
development of the other. This means, in particular, that a Smectic-A elastomer
subjected to a simple shear will develop Smectic-C-like tilt of the director.
Recently, Kramer and Finkelmann [arXiv:0708.2024, Phys. Rev. E {\bf 78}, 021704
(2008)] performed shear experiments on Smectic-A elastomers using two different
shear geometries. One of the experiments, which implements simple shear,
produces clear evidence for the development of Smectic-C-like tilt. Here, we
generalize a model for smectic elastomers introduced by Adams and Warner [Phys.
Rev. E {\bf 71}, 021708 (2005)] and use it to study the magnitude of
Smectic-C-like tilt under shear for the two geometries investigated by Kramer
and Finkelmann. Using reasonable estimates of model parameters, we estimate the
tilt angle for both geometries, and we compare our estimates to the
experimental results. The other shear geometry is problematic since it
introduces additional in-plane compressions in a sheet-like sample, thus
inducing instabilities that we discuss.Comment: 8 pages, 5 figure