13 research outputs found

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources

    Research on Teaching and Learning Mathematics at the Tertiary Level:State-of-the-art and Looking Ahead

    Get PDF
    This topical survey focuses on research in tertiary mathematics education, a field that has experienced considerable growth over the last 10 years. Drawing on the most recent journal publication as well as the latest advances from recent high quality conference proceedings, our review culls out the following five emergent areas of interest: mathematics teaching at the tertiary level; the role of mathematics in other disciplines; textbooks, assessment and students’ studying practices; transition to the tertiary level; and theoretical-methodological advances. We conclude the survey with a discussion of some potential ways forward for future research in this new and rapidly developing domain of inquiry

    Joy of mathematical modelling: a forgotten perspective?

    No full text
    We argue the relevance of including an affective perspective in the mathematical modelling education research and emphasise its importance for the teaching and learning of mathematical modelling at all levels, especially at the university. Our argument is supported by a recent survey of mathematics lecturers’ views on mathematical modelling, several follow-up interviews, and a review of literature on mathematical modelling that relates to enjoyment, pleasure, and appreciation. Findings from the survey and the follow-up interviews indicate that there is a group of practitioners who hold strong views on the importance of enjoyment in doing and teaching mathematical modelling

    Sense-making in mathematical modelling and applications educational research and practice

    No full text
    This latest contribution from members of the ICTMA research community focusses on how students, teachers, tertiary educators, and researchers make sense of mathematical modelling and applications educational research and practice. Innovative approaches in modelling educational research and research into, and evaluation of, teaching practice are showcased; pedagogical issues, assessment, and applicability at different levels of education relating to modelling and applications are investigated; and examples of modelling and applications in educational practice are provided
    corecore