2,000 research outputs found

    Inelastic and elastic collision rates for triplet states of ultracold strontium

    Get PDF
    We report measurement of the inelastic and elastic collision rates for ^{88}Sr atoms in the (5s5p)^3P_0 state in a crossed-beam optical dipole trap. This is the first measurement of ultracold collision properties of a ^3P_0 level in an alkaline-earth atom or atom with similar electronic structure. Since the (5s5p)^3P_0 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p){^3P_2} state.Comment: 4 pages 5 figure

    Experimental and numerical study of error fields in the CNT stellarator

    Full text link
    Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts (but not the deformations, yet) of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and phosphor rod, and were computed by means of a Biot-Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton-Raphson algorithm searches for the coils' displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm's ability to deduce the coils' displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved quantitative and qualitative agreement with experimental results.Comment: Special Issue on the 20th International Stellarator-Heliotron Worksho

    Quality of Life and psychopathology in adults who underwent Hematopoietic Stem Cell Transplantation (HSCT) in childhood: a qualitative and quantitative analysis.

    Get PDF
    Background: Patients who undergo pediatric Hematopoietic Stem Cell Transplantation (HSCT) may experience long-term psychological sequelae and poor Quality of Life (QoL) in adulthood. This study aimed to investigate subjective illness experience, QoL, and psychopathology in young adults who have survived pediatric HSCT. Method: The study involved patients treated with HSCT in the Hematology-Oncology Department between 1984 and 2007. Psychopathology and QoL were investigated using the SCL-90-R and SF-36. Socio-demographic and medical information was also collected. Finally, participants were asked to write a brief composition about their experiences of illness and care. Qualitative analysis of the texts was performed using T-LAB, an instrument for text analysis that allows the user to highlight the occurrences and co-occurrences of lemma. Quantitative analyses were performed using non-parametric tests (Spearman correlations, Kruskal-Wallis and Mann-Whitney tests). Results: Twenty-one patients (9 males) participated in the study. No significant distress was found on the SCL-90 Global Severity Index, but it was found on specific scales. On the SF-36, lower scores were reported on scales referring to bodily pain, general health, and physical and social functioning. All the measures were significantly (p < 0.05) associated with specific socio-demographic and medical variables (gender, type of pathology, type of HSCT, time elapsed between communication of the need to transplant and effective transplantation, and days of hospitalization). With regard to the narrative analyses, males focused on expressions related to the body and medical therapies, while females focused on people they met during treatment, family members, and donors. Low general health and treatment with autologous HSCT were associated with memories about chemotherapy, radiotherapy, and the body parts involved, while high general health was associated with expressions focused on gratitude (V-Test \ub1 1.96). Conclusion: Pediatric HSCT survivors are more likely to experience psychological distress and low QoL in adulthood compared with the general population. These aspects, along with survivors' subjective illness experience, show differences according to specific medical and socio-demographic variables. Studies are needed in order to improve the care and long-term follow-up of these families

    Simple battery armor to protect against gastrointestinal injury from accidental ingestion

    Get PDF
    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices.National Institutes of Health (U.S.) (Grant DE013023)National Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (Grant GM086433)National Institutes of Health (U.S.) (Grant T32 DK 7191-38

    Physiologic Status Monitoring via the Gastrointestinal Tract

    Get PDF
    Reliable, real-time heart and respiratory rates are key vital signs used in evaluating the physiological status in many clinical and non-clinical settings. Measuring these vital signs generally requires superficial attachment of physically or logistically obtrusive sensors to subjects that may result in skin irritation or adversely influence subject performance. Given the broad acceptance of ingestible electronics, we developed an approach that enables vital sign monitoring internally from the gastrointestinal tract. Here we report initial proof-of-concept large animal (porcine) experiments and a robust processing algorithm that demonstrates the feasibility of this approach. Implementing vital sign monitoring as a stand-alone technology or in conjunction with other ingestible devices has the capacity to significantly aid telemedicine, optimize performance monitoring of athletes, military service members, and first-responders, as well as provide a facile method for rapid clinical evaluation and triage.United States. Dept. of the Air Force (Air Force Contract FA8721-05-C-0002)United States. Dept. of Defense. Assistant Secretary of Defense for Research & EngineeringNational Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (Grant T32DK7191-38-S1

    Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2 - (5s4d)3D2 transition

    Full text link
    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2 - (5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr, and 88Sr improves the value of the (5s5p)3P2 - (5s4d)3D2 transition frequency for 88Sr and determines the isotope shifts for the transition.Comment: 4 pages, 5 figure

    Modeling Web Services by Iterative Reformulation of Functional and Non-Functional Requirements

    Get PDF
    Abstract. We propose an approach for incremental modeling of composite Web services. The technique takes into consideration both the functional and nonfunctional requirements of the composition. While the functional requirements are described using symbolic transition systems—transition systems augmented with state variables, function invocations, and guards; non-functional requirements are quantified using thresholds. The approach allows users to specify an abstract and possibly incomplete specification of the desired service (goal) that can be realized by selecting and composing a set of pre-existing services. In the event that such a composition is unrealizable, i.e. the composition is not functionally equivalent to the goal or the non-functional requirements are violated, our system provides the user with the causes for the failure, that can be used to appropriately reformulate the functional and/or non-functional requirements of the goal specification.

    Prolonged energy harvesting for ingestible devices

    Get PDF
    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW mm⁻² of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.National Institutes of Health (U.S.) (Grant EB-000244
    corecore