65 research outputs found

    Expression of PRB, FKBP52 and HB-EGF Relating with Ultrasonic Evaluation of Endometrial Receptivity

    Get PDF
    Background: To explore the molecular basis of the different ultrasonic patterns of the human endometrium, and the molecular marker basis of local injury. Methodology/Principal Findings: The mRNA and protein expression of FKBP52, progesterone receptor A (PRA), progesterone receptor B (PRB), and HB-EGF were detected in different patterns of the endometrium by real-time RTPCR and immunohistochemistry. There were differences in the mRNA and protein expression of FKBP52, PRB, and HB-EGF in the triple line (Pattern A) and homogeneous (Pattern C) endometrium in the window of implantation. No difference was detected in PRA expression. After local injury, the mRNA expression of HB-EGF significantly increased. In contrast, there was no difference in the mRNA expression of FKBP52, PRB, or PRA. The protein expression of FKBP52, PRB, and HB-EGF increased after local injury. There was no difference in the PRA expression after local injury. Conclusions: PRB, FKBP52, and HB-EGF may be the molecular basis for the classification of the ultrasonic patterns. HB-EGF may be the molecular basis of local injury. Ultrasonic evaluation on the day of ovulation can be effective in predicting the outcome of implantation

    Structure-function analysis in nuclear RNase P RNA

    Full text link
    Eukaryotic ribonuclease P (RNase P) enzymes require both RNA and protein subunits for activity in vivo and in vitro . We have undertaken an analysis of the complex RNA subunit of the nuclear holoenzyme in an effort to understand its structure and its similarities to and differences from the bacterial ribozymes. Phylogenetic analysis, structure-sensitive RNA footprinting, and directed mutagenesis reveal conserved secondary and tertiary structures with both strong similarities to the bacterial consensus and distinctive features. The effects of mutations in the most highly conserved positions are being used to dissect the functions of individual subdomains.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43252/1/11033_2004_Article_BF00988722.pd

    Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias

    Get PDF
    BACKGROUND: Hypospadias is a common inborn error of the male urethral development, for which the aetiology is still elusive. Polymorphic variants in genes involved in the masculinisation of male genitalia, such as the androgen receptor, have been associated with some cases of hypospadias. Co-regulators of the androgen receptor start being acknowledged as possible candidates for hormone-resistance instances, which could account for hypospadias. One such molecule, the protein FKBP52, coded by the FKBP4 gene, has an important physiological role in up-regulating androgen receptor activity, an essential step in the development of the male external genitalia. The presence of hypospadias in mice lacking fkbp52 encouraged us to study the sequence and the expression of FKBP4 in boys with isolated hypospadias. PATIENTS AND METHODS: The expression of FKBP52 in the genital skin of boys with hypospadias and in healthy controls was tested by immunohistochemistry. Mutation screening in the FKBF4 gene was performed in ninety-one boys with non syndromic hypospadias. Additionally, two polymorphisms were typed in a larger cohort. RESULTS: Immunohistochemistry shows epithelial expression of FKBP52 in the epidermis of the penile skin. No apparent difference in the FKBP52 expression was detected in healthy controls, mild or severe hypospadias patients. No sequence variants in the FKBP4 gene have implicated in hypospadias in our study. CONCLUSION: FKBP52 is likely to play a role in growth and development of the male genitalia, since it is expressed in the genital skin of prepubertal boys; however alterations in the sequence and in the expression of the FKBP4 gene are not a common cause of non-syndromic hypospadias

    A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51

    Get PDF
    The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies

    Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights

    Get PDF
    Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube

    Differential Impact of Tetratricopeptide Repeat Proteins on the Steroid Hormone Receptors

    Get PDF
    Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity

    Regulation of endometrial regeneration; mechanisms contributing to repair and restoration of tissue integrity following menses

    Get PDF
    The human endometrium is a dynamic, multi-cellular tissue that lines the inside of the uterine cavity. During a woman’s reproductive lifespan the endometrium is subjected to cyclical episodes of proliferation, angiogenesis, differentiation/decidualisation, shedding (menstruation), repair and regeneration in response to fluctuating levels of oestrogen and progesterone secreted by the ovaries. The endometrium displays unparalleled, tightly regulated, tissue remodelling resulting in a healed, scar-free tissue following menses or parturition. Mechanisms responsible for initiation of menses have been well documented: following progesterone withdrawal there is an increase in inflammatory mediators, focal hypoxia and induction and activation of matrix-degrading enzymes. In contrast, the molecular and cellular changes responsible for rapid, regulated, tissue repair at a time when oestrogen and progesterone are low are poorly understood. Histological studies using human menstrual phase endometrium have revealed that tissue destruction and shedding occur in close proximity to re-epithelialisation/repair. It has been proposed that re-epithelialisation involves proliferation of glandular epithelial cells in the remaining basal compartment; there is also evidence for a contribution from the underlying stroma. A role for androgens in the regulation of apoptosis of endometrial stromal cells has been proposed but the impact of androgens on tissue repair has not been investigated. Studies using human xenografts and primates have been used to model some aspects of the impact of progesterone withdrawal but simultaneous shedding (menses) and repair have not been modelled in mice; the species of choice for translational biomedical research. In the course of the studies described in this thesis, the following aims have been addressed: 1. To establish a model of menses in the mouse which mimics menses in women, namely; simultaneous breakdown and repair, overt menstruation, immune cell influx, tissue necrosis and re-epithelialisation. 2. To use this model to determine if the stromal cell compartment contributes to endometrial repair. 3. To examine the impact of androgens on the regulation of menses (shedding) and repair. An informative mouse model of endometrial breakdown that was characterised by overt menses, as well as rapid repair, was developed. Immunohistological evidence for extensive tissue remodelling including active angiogenesis, transient hypoxia, epithelial cell-specific proliferation and re-epithelialisation were obtained by examining uterine tissues recovered during an “early window of breakdown and repair” (4 to 24 hours after progesterone withdrawal). Novel data included identification of stromal cells that expressed epithelial cell markers, close to the luminal surface following endometrial shedding, suggesting a role for mesenchymal to epithelial transition (MET) in re-epithelialisation of the endometrium. In support of this idea, array and qRTPCR analyses revealed dynamic changes in expression of mRNAs encoded by genes known to be involved in MET during the window of breakdown and repair. Roles for hypoxia and tissue-resident macrophages in breakdown and tissue remodelling were identified. Treatment of mice with dihydrotestosterone to mimic concentrations of androgens circulated in women at the time of menses had an impact on the timing and duration of endometrial breakdown. Array analysis revealed altered expression of genes implicated in MET and angiogenesis/inflammation highlighting a potential, previously unrecognised role for androgens in regulation of tissue turnover during menstruation. In summary, using a newly refined mouse model new insights were obtained, implicating androgens and stromal MET in restoration of endometrial tissue homeostasis during menstruation. These findings may inform development of new treatments for disorders associated with aberrant repair such as heavy menstrual bleeding and endometriosis

    Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain

    No full text
    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family
    corecore