52 research outputs found
Cellular injury and neuroinflammation in children with chronic intractable epilepsy
<p>Abstract</p> <p>Objective</p> <p>To elucidate the presence and potential involvement of brain inflammation and cell death in neurological morbidity and intractable seizures in childhood epilepsy, we quantified cell death, astrocyte proliferation, microglial activation and cytokine release in brain tissue from patients who underwent epilepsy surgery.</p> <p>Methods</p> <p>Cortical tissue was collected from thirteen patients with intractable epilepsy due to focal cortical dysplasia (6), encephalomalacia (5), Rasmussen's encephalitis (1) or mesial temporal lobe epilepsy (1). Sections were processed for immunohistochemistry using markers for neuron, astrocyte, microglia or cellular injury. Cytokine assay was performed on frozen cortices. Controls were autopsy brains from eight patients without history of neurological diseases.</p> <p>Results</p> <p>Marked activation of microglia and astrocytes and diffuse cell death were observed in epileptogenic tissue. Numerous fibrillary astrocytes and their processes covered the entire cortex and converged on to blood vessels, neurons and microglia. An overwhelming number of neurons and astrocytes showed DNA fragmentation and its magnitude significantly correlated with seizure frequency. Majority of our patients with abundant cell death in the cortex have mental retardation. IL-1beta, IL-8, IL-12p70 and MIP-1beta were significantly increased in the epileptogenic cortex; IL-6 and MCP-1 were significantly higher in patients with family history of epilepsy.</p> <p>Conclusions</p> <p>Our results suggest that active neuroinflammation and marked cellular injury occur in pediatric epilepsy and may play a common pathogenic role or consequences in childhood epilepsy of diverse etiologies. Our findings support the concept that immunomodulation targeting activated microglia and astrocytes may be a novel therapeutic strategy to reduce neurological morbidity and prevent intractable epilepsy.</p
Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death
<p>Abstract</p> <p>Background</p> <p>Chronic <it>N</it>-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control.</p> <p>Results</p> <p>Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3ζ was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss.</p> <p>Conclusion</p> <p>This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.</p
Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress
Belgian retrospective survey of hereditary transthyretin-mediated (hATTR) amyloidosis patients treated with patisiran in real-world practice
Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin
Mesenchymal stem cells (MSCs) can ameliorate symptoms in several neurodegenerative diseases. However, the toxic environment of a degenerating central nervous system (CNS) characterized by hypoxia, glutamate (Glu) excess and amyloid beta (Abeta) pathology may hamper the survival and regenerative/replacing capacities of engrafted stem cells. Indeed, human MSC (hMSC) exposed to hypoxia were disabled in (i) the capacity of their muscarinic receptors (mAChRs) to respond to acetylcholine (ACh) with a transient increase in intracellular [Ca(2+)], (ii) their capacity to metabolize Glu, reflected by a strong decrease in glutamine synthetase activity, and (iii) their survival on exposure to Glu. Cocultivation of MSC with PC12 cells expressing the amyloid precursor protein gene (APPsw-PC12) increased the release of IL-6 from MSC. HMSC exposed to erythropoietin (EPO) showed a cholinergic neuron-like phenotype reflected by increased cellular levels of choline acetyltransferase, ACh and mAChR. All their functional deficits observed under hypoxia, Glu exposure and APPsw-PC12 cocultivation were reversed by the application of EPO, which increased the expression of Wnt3a. EPO also enhanced the metabolism of Abeta in MSC by increasing their neprilysin content. Our data show that cholinergic neuron-like differentiation of MSC, their functionality and resistance to a neurotoxic environment is regulated and can be improved by EPO, highlighting its potential for optimizing cellular therapies of the CNS
The Glutamate Aspartate Transporter (GLAST) Mediates l-Glutamate-Stimulated Ascorbate-Release Via Swelling-Activated Anion Channels in Cultured Neonatal Rodent Astrocytes
- …
