1,707 research outputs found

    Performance of the IUE Spacecraft Batteries After 70 Months

    Get PDF
    The battery performance of the IUE spacecraft launched in 1977 is updated. Changes made in the battery operational procedures are detailed. The aging effects after several eclipse seasons and the effects of 8 C temperature was anticipated. The batteries met their design goals and should meet the 10 year goal

    Update of the IUE battery in-flight performance

    Get PDF
    The in-flight performance data of two 17-cell, 6-ampere-hour nickel cadmium spacecraft batteries are presented covering 22 months of operation. Fluctuations in the battery voltage and the battery temperature are presented for spacecraft movement throughout a beta range of 0 to 130 deg. The battery discharge voltages during the peak eclipse seasons, daily seasons, and daily eclipse periods are noted. Finally, the spacecraft data are compared to data from a 6-ampere-hour test pack and test flight data

    The LDEF heat pipe experiment power systems

    Get PDF
    A heatpipe experiment for a long duration exposure facility is described. The design and configuration of the power system of the spacecraft is reported with emphasis placed on its solar array panels, 12-ampere hour 18-cell nickel battery, and its electronic controller

    Assessment of the operating characteristics of the SSME LOX turbopump pump-end bearing

    Get PDF
    A bearing/shaft model of the SSME LOX turbopump was developed using the SHABERTH bearing/shaft math modeling computer code. A previously developed bearing/shaft thermal model of the SSME LOX turbopump turbine and bearing was used in conjunction with SHABERTH to evaluate the thermomechanical operating characteristics of the LOX turbopump end bearings. Results show that for the two unmounted diametrical clearances evaluated (4.0 mils and 6.3 mils), the inboard pump end bearing supports about 81% of the isolator load for the small clearance and 77% of the isolator load for the larger clearance. Bearing clearance changes due to thermal effects were 40% for the 4.0 mil diametrical clearance case and 19% for the 6.3 mil clearance case evaluated. The thermal analysis included evaluation of bearing temperatures for a subcooled case and a saturated case. Results indicate that no drastic temperature change occurred between the two cases. Since the rolling element and race surfaces of the subcooled case were at temperatures sufficiently high enough to be vapor blanketed, exceeding saturation temperature at the bearing inlet did not increase surface temperatures greatly

    Direct observation of interface instability during crystal growth

    Get PDF
    The general aim of this investigation was to study interface stability and solute segregation phenomena during crystallization of a model system. Emphasis was to be placed on direct observational studies partly because this offered the possibility at a later stage of performing related experiments under substantially convection-free conditions in the space shuttle. The major achievements described in this report are: (1) the development of a new model system for fundamental studies of crystal growth from the melt and the measurement of a range of material parameters necessary for comparison of experiment with theory. (2) The introduction of a new method of measuring segregation coefficient using absorption of a laser beam by the liquid phase. (3) The comparison of segregation in crystals grown by gradient freezing and by pulling from the melt. (4) The introduction into the theory of solute segregation of an interface field term and comparison with experiment. (5) The introduction of the interface field term into the theories of constitutional supercooling and morphological stability and assessment of its importance

    Advanced rocket engine cryogenic turbopump bearing thermal model

    Get PDF
    A lumped node thermal model was developed representing the Space Shuttle Main Engine (SSME) liquid oxygen (LOX) turbopump turbine end bearings operating in a cryogenically cooled bearing tester. Bearing elements, shaft, carrier, housing, cryogen flow characteristics, friction heat, and fluid viscous energy are included in the model. Heat transfer characteristics for the regimes of forced convection boiling are modeled for liquid oxygen (LOX) and liquid nitrogen (LN2). Large temperature differences between the cryogenic fluid and baring contact surfaces require detailed nodal representation in these areas. Internal loads and friction heat are affected by temperature dependent operating clearances requiring iterations between bearing thermal and mechanical models. Analyses indicate a thermal-mechanical coupling resulting in reduced operating clearances, increased loading and heating which can contribute to premature bearing failure. Contact surfaces operate at temperatures above local saturation resulting in vapor rather than liquid in the contacts, precluding possible liquid film lubrication. Elevated temperatures can reduce lubrication, increase friction, and reduce surface hardness supporting a surface failure mode rather than subsurface fatigue

    The Use of Film to Influence and Promote Generational Change in the Post- War Era

    Get PDF
    The event of World War two had effects on many facets of society globally. One major effected area was that of film. Before the war European film was at a high level of importance. Renovations and progress in film were all being produced by European film makers. Post- war European film; however, was almost non-existent. This shifted the future of film over to the United States, and thus shifter film focus to a film noir type focus. Post-war cinema began many major film movements such as Italian Neorealism and Japanese Art Cinema. American film; however, had a dark focus. Films were morally ambiguous and critical of pre-existing social norms. It also brought attention to many famous directors such as Orson Welles and Alfred Hitchcock. Post- war cinema’s focus was that of change. It aimed to call attention to the areas of society that needed work and used its influence of dark imagery to do that. This research paper aims to prove the director’s use of post- war film to change society in a way that would prevent any future conflict. It will closely analyze such societal issues as the change in identity in the pre-and post- war generation, the threat of communism, corruption of power, and deep interpersonal desires that remained unaddressed. This will be proved by analyzing different films released throughout the post- war period. Films like Rebel Without a Cause, Man on Tightrope, On the Waterfront, Citizen Kane, and Vertigo

    Ares I First Stage: Powering Exploration

    Get PDF
    he mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This presentation provides an overview and update on the design and development of the Ares I First Stage Propulsion system

    Progress on Ares First Stage Propulsion

    Get PDF
    The mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This paper provides an update on the design and development of the Ares First Stage Propulsion system

    Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1

    Get PDF
    Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM
    • …
    corecore