8,248 research outputs found

    An Empirical Approach to Temporal Reference Resolution

    Full text link
    This paper presents the results of an empirical investigation of temporal reference resolution in scheduling dialogs. The algorithm adopted is primarily a linear-recency based approach that does not include a model of global focus. A fully automatic system has been developed and evaluated on unseen test data with good results. This paper presents the results of an intercoder reliability study, a model of temporal reference resolution that supports linear recency and has very good coverage, the results of the system evaluated on unseen test data, and a detailed analysis of the dialogs assessing the viability of the approach.Comment: 13 pages, latex using aclap.st

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Molecular production in two-component atomic Fermi gases

    Full text link
    We provide a practical approach to the molecular production via linear downward sweeps of Feshbach resonances in degenerate Fermi gases containing incoherent mixtures of two atomic spin states. We show that the efficiency of the association of atoms is determined just by the Landau-Zener parameter in addition to the density of the gas. Our approach of pairwise summation of the microscopic binary transition probabilities leads to an intuitive explanation for the observed saturation of the molecular production and recovers all atomic loss curves of C.A. Regal et al. [Nature (London) 427, 47 (2003)] as well as K.E. Strecker et al. [Phys. Rev. Lett. 91, 080406 (2003)] without adjustable parameters.Comment: 4 pages, 3 eps figures; final versio

    Making Cold Molecules by Time-dependent Feshbach Resonances

    Full text link
    Pairs of trapped atoms can be associated to make a diatomic molecule using a time dependent magnetic field to ramp the energy of a scattering resonance state from above to below the scattering threshold. A relatively simple model, parameterized in terms of the background scattering length and resonance width and magnetic moment, can be used to predict conversion probabilities from atoms to molecules. The model and its Landau-Zener interpretation are described and illustrated by specific calculations for 23^{23}Na, 87^{87}Rb, and 133^{133}Cs resonances. The model can be readily adapted to Bose-Einstein condensates. Comparison with full many-body calculations for the condensate case show that the model is very useful for making simple estimates of molecule conversion efficiencies.Comment: 11 pages, 11 figures; talk for Quantum Challenges Symposium, Warsaw, Poland, September 4-7, 2003. Published in Journal of Modern Optics 51, 1787-1806 (2004). Typographical errors in Journal article correcte

    Do Foreign-Owned Firms Provide Better Working Conditions Than Their Domestic Counterparts? A Comparative Analysis

    Get PDF
    This paper analyses to what extent working conditions in foreign-owned firms differ from those in their domestic counterparts. It makes three main contributions. First, we replicate the consensus in the empirical literature by applying a standardised methodology to firm-level data for three developed (Germany, Portugal, UK) and two emerging economies (Brazil, Indonesia). We show that, consistent with previous evidence, foreign-owned firms offer substantially higher average wages than domestic firms and that this difference is particularly important in emerging economies. Second, we show that these positive wage effects of foreign takeovers reduce in size when controlling for changes in the composition of the workforce, although they tend to remain positive and statistically significant. However, the wage effects associated with worker movements from domestic to foreign firms are potentially important, particularly in emerging economies. Third, we look not only at wage outcomes but also consider other working conditions such as working hours, job stability and union coverage. We find that foreign takeovers of domestic firms tend to have a small positive effect on wages, but little effect on other aspects of working conditions.foreign direct investment, foreign wage premia

    The circumgalactic medium in Lyman-alpha: a new constraint on galactic outflow models

    Get PDF
    Galactic outflows are critical to our understanding of galaxy formation and evolution. However the details of the underlying feedback process remain unclear. We compare Lyα\alpha observations of the circumgalactic medium (CGM) of Lyman Break Galaxies (LBGs) with mock observations of their simulated CGM. We use cosmological hydrodynamical `zoom-in' simulations of an LBG which contains strong, momentum-driven galactic outflows. Simulation snapshots at z=2.2z=2.2 and z=2.65z=2.65 are used, corresponding to the available observational data. The simulation is post-processed with the radiative transfer code \textsc{crash} to account for the impact of ionising photons on hydrogen gas surrounding the simulated LBG. We generate mock absorption line maps for comparison with data derived from observed close galaxy-galaxy pairs. We perform calculations of Lyα\alpha photons scattering through the CGM with our newly developed Monte-Carlo code \textsc{slaf}, and compare to observations of diffuse Lyα\alpha halos around LBGs. Our fiducial galactic outflow model comes closer to reproducing currently observed characteristics of the CGM in Lyα\alpha than a reference inefficient feedback model used for comparison. Nevertheless, our fiducial model still struggles to reproduce the observed data of the inner CGM (at impact parameter b<30b<30kpc). Our results suggest that galactic outflows affect Lyα\alpha absorption and emission around galaxies mostly at impact parameters b<50b<50 kpc, while cold accretion flows dominate at larger distances. We discuss the implications of this result, and underline the potential constraining power of CGM observations - in emission and absorption - on galactic outflow models.Comment: 14 pages, 12 figure

    Discovering new two-dimensional topological insulators from computational screening

    Get PDF
    We have performed a computational screening of topological two-dimensional (2D) materials from the Computational 2D Materials Database (C2DB) employing density functional theory. A full \textit{ab initio} scheme for calculating hybrid Wannier functions directly from the Kohn-Sham orbitals has been implemented and the method was used to extract Z2\mathbb{Z}_2 indices, Chern numbers and Mirror Chern numbers of 3331 2D systems including both experimentally known and hypothetical 2D materials. We have found a total of 46 quantum spin Hall insulators, 7 quantum anomalous Hall insulators and 9 crystalline topological insulators that are all predicted to be dynamically stable. Roughly one third of these were known prior to the screening. The most interesting of the novel topological insulators are investigated in more detail. We show that the calculated topological indices of the quantum anomalous Hall insulators are highly sensitive to the approximation used for the exchange-correlation functional and reliable predictions of the topological properties of these materials thus require methods beyond density functional theory. We also performed GWGW calculations, which yield a gap of 0.65 eV for the quantum spin Hall insulator PdSe2_2 in the MoS2_2 crystal structure. This is significantly higher than any known 2D topological insulator and three times larger than the Kohn-Sham gap.Comment: 12 page

    The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies

    Full text link
    We use cosmological hydrodynamical simulations to investigate the role of feedback from accreting black holes on the evolution of sizes, compactness, stellar core density and specific star-formation of massive galaxies with stellar masses of Mstar>1010.9M M_{star} > 10^{10.9} M_{\odot}. We perform two sets of cosmological zoom-in simulations of 30 halos to z=0: (1) without black holes and Active Galactic Nucleus (AGN) feedback and (2) with AGN feedback arising from winds and X-ray radiation. We find that AGN feedback can alter the stellar density distribution, reduce the core density within the central 1 kpc by 0.3 dex from z=1, and enhance the size growth of massive galaxies. We also find that galaxies simulated with AGN feedback evolve along similar tracks to those characterized by observations in specific star formation versus compactness. We confirm that AGN feedback plays an important role in transforming galaxies from blue compact galaxies into red extended galaxies in two ways: (1) it effectively quenches the star formation, transforming blue compact galaxies into compact quiescent galaxies and (2) it also removes and prevents new accretion of cold gas, shutting down in-situ star formation and causing subsequent mergers to be gas-poor or mixed. Gas poor minor mergers then build up an extended stellar envelope. AGN feedback also puffs up the central region through the fast AGN driven winds as well as the slow expulsion of gas while the black hole is quiescent. Without AGN feedback, large amounts of gas accumulate in the central region, triggering star formation and leading to overly massive blue galaxies with dense stellar cores.Comment: 13 pages, 7 figures, Accepted for publication in Ap
    corecore