72 research outputs found

    Non-Gaussianity of the density distribution in accelerating universes

    Full text link
    According to recent observations, the existence of the dark energy has been considered. Even though we have obtained the constraint of the equation of the state for dark energy (p=wρp = w \rho) as −1≀w≀−0.78-1 \le w \le -0.78 by combining WMAP data with other astronomical data, in order to pin down ww, it is necessary to use other independent observational tools. For this purpose, we consider the ww dependence of the non-Gaussianity of the density distribution generated by nonlinear dynamics. To extract the non-Gaussianity, we follow a semi-analytic approach based on Lagrangian linear perturbation theory, which provides an accurate value for the quasi-nonlinear region. From our results, the difference of the non-Gaussianity between w=−1w = -1 and w=−0.5w= -0.5 is about 4% while that between w=−1w = -1 and w=−0.8w= -0.8 is about 0.90.9 %. For the highly non-linear region, we estimate the difference by combining this perturbative approach with N-body simulation executed for our previous paper. From this, we can expect the difference to be more enhanced in the low-zz region, which suggests that the non-Gaussianity of the density distribution potentially plays an important role for extracting the information of dark energy.Comment: 15 pages, 4 figures, accepted for publication in JCAP; v2: smoothing scale has been change

    Gravitational instability on the brane: the role of boundary conditions

    Get PDF
    An outstanding issue in braneworld theory concerns the setting up of proper boundary conditions for the brane-bulk system. Boundary conditions (BC's) employing regulatory branes or demanding that the bulk metric be nonsingular have yet to be implemented in full generality. In this paper, we take a different route and specify boundary conditions directly on the brane thereby arriving at a local and closed system of equations (on the brane). We consider a one-parameter family of boundary conditions involving the anisotropic stress of the projection of the bulk Weyl tensor on the brane and derive an exact system of equations describing scalar cosmological perturbations on a generic braneworld with induced gravity. Depending upon our choice of boundary conditions, perturbations on the brane either grow moderately (region of stability) or rapidly (instability). In the instability region, the evolution of perturbations usually depends upon the scale: small scale perturbations grow much more rapidly than those on larger scales. This instability is caused by a peculiar gravitational interaction between dark radiation and matter on the brane. Generalizing the boundary conditions obtained by Koyama and Maartens, we find for the Dvali-Gabadadze-Porrati model an instability, which leads to a dramatic scale-dependence of the evolution of density perturbations in matter and dark radiation. A different set of BC's, however, leads to a more moderate and scale-independent growth of perturbations. For the mimicry braneworld, which expands like LCDM, this class of BC's can lead to an earlier epoch of structure formation.Comment: 35 pages, 9 figures, an appendix and references added, version to be published in Classical and Quantum Gravit

    Non-Gaussianity of the density distribution in accelerating universes II:N-body simulations

    Get PDF
    We explore the possibility of putting constraints on dark energy models with statistical property of large scale structure in the non-linear region. In particular, we investigate the ww dependence of non-Gaussianity of the smoothed density distribution generated by the nonlinear dynamics. In order to follow the non-linear evolution of the density fluctuations, we apply N-body simulations based on P3MP^3 M scheme. We show that the relative difference between non-Gaussianity of w=−0.8w=-0.8 model and that of w=−1.0w=-1.0 model is 0.670.67 % (skewness) and 1.21.2 % (kurtosis) for R=8h−1R=8h^{-1} Mpc. We also calculate the correspondent quantities for R=2h−1R=2h^{-1} Mpc, 3.03.0 % (skewness) and 4.54.5 % (kurtosis), and the difference turn out to be greater, even though non-linearity in this scale is so strong that the complex physical processes about galaxy formation affect the galaxy distribution. From this, we can expect that the difference can be tested by all sky galaxy surveys with the help of mock catalogs created by selection functions, which suggests that non-Gaussianity of the density distribution potentially plays an important role for extracting information on dark energy.Comment: 21 pages, 14 figure

    Cosmic structures via Bose Einstein condensation and its collapse

    Get PDF
    We develop our novel model of cosmology based on the Bose-Einstein condensation. This model unifies the Dark Energy and the Dark Matter, and predicts multiple collapse of condensation, followed by the final acceleration regime of cosmic expansion. We first explore the generality of this model, especially the constraints on the boson mass and condensation conditions. We further argue the robustness of this model over the wide range of parameters of mass, self coupling constant and the condensation rate. Then the dynamics of BEC collapse and the preferred scale of the collapse are studied. Finally, we describe possible observational tests of our model, especially, the periodicity of the collapses and the gravitational wave associated with them.Comment: 21 pages, 5 figure

    A new approach to cosmological perturbations in f(R) models

    Full text link
    We propose an analytic procedure that allows to determine quantitatively the deviation in the behavior of cosmological perturbations between a given f(R) modified gravity model and a LCDM reference model. Our method allows to study structure formation in these models from the largest scales, of the order of the Hubble horizon, down to scales deeply inside the Hubble radius, without employing the so-called "quasi-static" approximation. Although we restrict our analysis here to linear perturbations, our technique is completely general and can be extended to any perturbative order.Comment: 21 pages, 2 figures; Revised version according to reviewer's suggestions; Typos corrected; Added Reference

    Third-order perturbative solutions in the Lagrangian perturbation theory with pressure II: Effect of the transverse modes

    Get PDF
    Lagrangian perturbation theory for cosmological fluid describes structure formation in the quasi-nonlinear stage well. In a previous paper, we presented a third-order perturbative equation for Lagrangian perturbation with pressure. There we considered only the longitudinal modes for the first-order perturbation. In this paper, we generalize the perturbation, i.e., we consider both the longitudinal and the transverse modes for the first-order perturbation. Then we derive third-order perturbative equations and solutions.Comment: 10 pages, no figure; accepted for publication in Phys.Rev.

    Relativistic cosmological perturbation scheme on a general background: scalar perturbations for irrotational dust

    Full text link
    In standard perturbation approaches and N-body simulations, inhomogeneities are described to evolve on a predefined background cosmology, commonly taken as the homogeneous-isotropic solutions of Einstein's field equations (Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies). In order to make physical sense, this background cosmology must provide a reasonable description of the effective, i.e. spatially averaged, evolution of structure inhomogeneities also in the nonlinear regime. Guided by the insights that (i) the average over an inhomogeneous distribution of matter and geometry is in general not given by a homogeneous solution of general relativity, and that (ii) the class of FLRW cosmologies is not only locally but also globally gravitationally unstable in relevant cases, we here develop a perturbation approach that describes the evolution of inhomogeneities on a general background being defined by the spatially averaged evolution equations. This physical background interacts with the formation of structures. We derive and discuss the resulting perturbation scheme for the matter model `irrotational dust' in the Lagrangian picture, restricting our attention to scalar perturbations.Comment: 18 pages. Matches published version in CQ

    Third-order perturbative solutions in the Lagrangian perturbation theory with pressure

    Get PDF
    Lagrangian perturbation theory for cosmological fluid describes structure formation in the quasi-nonlinear stage well. We present a third-order perturbative equation for Lagrangian perturbation with pressure in both the longitudinal and transverse modes. Then we derive the perturbative solution for simplest case.Comment: 11 pages, 1 figure; accepted for publication in Physical Review

    De Sitter ground state of scalar-tensor gravity and its primordial perturbation

    Full text link
    Scalar-tensor gravity is one of the most competitive gravity theory to Einstein's relativity. We reconstruct the exact de Sitter solution in scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along the potential. This solution may have some relation to the early inflation and present acceleration of the universe. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.Comment: 9 page

    Second-order matter density perturbations and skewness in scalar-tensor modified gravity models

    Get PDF
    We study second-order cosmological perturbations in scalar-tensor models of dark energy that satisfy local gravity constraints, including f(R) gravity. We derive equations for matter fluctuations under a sub-horizon approximation and clarify conditions under which first-order perturbations in the scalar field can be neglected relative to second-order matter and velocity perturbations. We also compute the skewness of the matter density distribution and find that the difference from the LCDM model is only less than a few percent even if the growth rate of first-order perturbations is significantly different from that in the LCDM model. This shows that the skewness provides a model-independent test for the picture of gravitational instability from Gaussian initial perturbations including scalar-tensor modified gravity models.Comment: 15 pages, 1 figure, version to appear in JCA
    • 

    corecore