
ar
X

iv
:0

70
5.

30
91

v1
  [

as
tr

o-
ph

] 
 2

2 
M

ay
 2

00
7

1

Cosmic structures via Bose Einstein condensation and its collapse

Takeshi Fukuyama
†, Masahiro Morikawa

∗ and Takayuki Tatekawa
◦

†Department of Physics, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan

Department of Physics, Yonsei University, Seoul 120-749, Korea
∗Department of Physics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo,

112-8610 Japan
◦The center for Continuing Professional Development, Kogakuin University,

1-24-2 Nishi-shinjuku, Shinjuku, Tokyo 163-8677 Japan

Advanced Research Institute for Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku, Tokyo 169-8555 Japan

We develop our novel model of cosmology based on the Bose-Einstein condensation. This
model unifies the Dark Energy and the Dark Matter, and predicts multiple collapse of con-
densation, followed by the final acceleration regime of cosmic expansion. We first explore the
generality of this model, especially the constraints on the boson mass and condensation con-
ditions. We further argue the robustness of this model over the wide range of parameters of
mass, self coupling constant and the condensation rate. Then the dynamics of BEC collapse
and the preferred scale of the collapse are studied. Finally, we describe possible observa-
tional tests of our model, especially, the periodicity of the collapses and the gravitational
wave associated with them.

§1. Introduction

After WMAP, fundamental parameters in astrophysics, H0, q, ΩM , ΩΛ, etc.
have became more accurate and mutually consistent. Although the standard ΛCDM
model can explain most of the observations, consistently with these parameters, it
still remains as a phenomenological model. In our previous paper,1) in order to im-
prove this model, we discussed a cosmological model in the framework of relativistic
Bose Einstein Condensate (BEC) and gave a partial solution of ”why now problem”.
There, the quantitative study has been limited within spatially uniform development
of condensates. In the present paper, we develop this cosmological model to include
spatially inhomogeneous modes to describe the instability of BEC and to clarify the
preferred scales of the collapsed objects. Furthermore, we establish the robustness
of this model, especially showing a generality of the condensation strength.

In general, BEC proceeds in bose gas of mass m and number density n, when the
thermal de Broglie wave length λdB ≡

√
2π~2/(mkT ) exceeds the mean interparticle

distance n1/3, and the wavepacket percolates in space,

kT <
2π~

2n2/3

m
. (1.1)

On the other hand, cosmic evolution has the same temperature dependence since
the matter dominant universe behaves, in an adiabatic process, as

ρ ∝ T 3/2. (1.2)
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Hence if the boson temperature is equal to radiation temperature at z = 1000,
for example, we have the critical temperature at present Tcritical = 0.0027K, since
Tm ∝ a−2 and therefore, Tγ/Tm ∝ a in an adiabatic evolution. Using the present

energy density of the universe ρ = 9.44 × 10−30g/cm3, BEC takes place provided
that the boson mass satisfies

m < 1.87eV.∗) (1.3)

Conventional BEC is described in terms of the mean field which obeys the Gross-
Pitaevskii (GP) equation

i~
∂ψ

∂t
= − ~

2

2m
∆ψ + V ψ + g |ψ|2 ψ. (1.4)

Here ψ (~x, t) is the condensate mean field, and V (~x) is the potential. The coupling
strength g is related with the s-wave scattering length a as

g = 4π~
2a/m, (1.5)

and therefore implies attractive interaction for a < 0. Originally, only positive
value for a (and therefore g) has been considered for BEC, since negative value
for a necessarily yields imaginary terms in the ground state energy and chemical
potential.2) However, the appearance of the imaginary part in the energy simply
implies that the ground state is unstable but BEC itself takes place, as a transient
state, even in negative g.3) This instability of BEC turns out to be crucial in the
context of cosmology.

The above GP equation is apparently non-relativistic. In the context of cosmol-
ogy, we need a relativistic GP equation. The relativistic GP equation has a form of
the Klein-Gordon equation with self-interaction and the Lagrangian is given by

L =
√−g

(
gµν∂µφ

†∂νφ−m2φ†φ− λ

2
(φ†φ)2

)
. (1.6)

We discuss the metric tensor given by

ds2 = (1 + 2Φ)dt2 − a2(1 − 2Φ)dx2 , (1.7)

where Φ = Φ (t, ~x) represents the gravitational potential. The instability of this
field has already been studied in4) disregarding the cosmic expansion. We consider
normal mass signature but the self-coupling is negative. The instability analysis is
applicable for either signatures for m2 and λ. We will discuss about the difference
of our formalism from the usual Higgs mechanism later.

In section 2, the essence of the BEC cosmology is briefly summarized. Scalar dark
matter plays an essential role in our scenario. We show in section 3 that BEC model
is quite robust, especially the final accelerated-expansion regime is always realized
in wide range of parameters. In section 4, extending the phenomenological scenario

∗) This constraint will be somewhat reduced later. See Eq.(32)
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reviewed in section 2, we argue the inhomogeneous modes and the instability of BEC
based on the microscopic Lagrangian Eq.(1.6) with the metric Eq.(1.7). Section 5 is
devoted to the miscellaneous observational problems to probe the remnants of this
BEC cosmological model.

§2. Basics of BEC cosmology

We briefly describe the basic scenario of the BEC cosmology developed in.1), 5)

The backbones of this model are 1. relativistic GP equation, 2. steady slow process
of BEC, and 3. BEC instability which leads to the Dark Energy collapse.

2.1. Relativistic Gross-Pitaevski equation

From Eq.(1.6), the relativistic version of the GP equation∗), in the Minkowsky
space, becomes

∂2φ

∂t2
−∆φ+m2φ+ λ(φ∗φ)φ = 0, (2.1)

with the potential

V ≡ m2φ∗φ+
λ

2
(φ∗φ)2. (2.2)

Substituting the decomposition of the classical mean field φ = AeiS and defining the

momentum pµ = −∂µS = (ǫ,−~p), where ~p = mγ~v, γ =
(
1 − ~v2

)−1/2
, the relativistic

GP equation reduces to the Euler equation for fluid:

ǫ
∂~v

∂t
+ ~∇

(
γv2

2
+

λ

12m
A2 +

~
2

2Am
∂2

µA

)
= 0 (2.3)

The energy-momentum tensor associated with Eq.(1.6) becomes

Tµν ≡ 2√−g
δL

δgµν
= 2∂µφ

∗∂νφ− gµν(∂φ∗∂φ−m2φ∗φ− 1

2
(φ∗φ)2). (2.4)

For the isotropic relativistic fluid, it reduces to

T µν = diag(ρ, p, p, p), (2.5)

in the local rest frame. Here, the condensate part of ρ and p are given by

ρ = T 00 = φ̇∗φ̇+m2φ∗φ+
λ

2
(φ∗φ)2 = φ̇∗φ̇+ V, (2.6)

and

p = T 11 = T 22 = T 33 = φ̇∗φ̇−m2φ∗φ− λ

2
(φ∗φ)2 = φ̇∗φ̇− V. (2.7)

∗) We set c = 1, ~ = 1 hereafter.
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2.2. Steady slow process of BEC

We consider the cosmic evolution of various energy densities on average in our
model, leaving aside the dynamics of inhomogeneous modes, derived from the micro-
scopic Lagrangian (1.6) to section 4. Further, here we discuss the BEC cosmology
phenomenologically, leaving aside the generality of the parameters to section 3. The
whole evolution is given by the following set of equations.1)

H2 =

(
ȧ

a

)2

=
8πG

3c2
(ρg + ρφ + ρl) ,

ρ̇g = −3Hρg − Γρg,

ρ̇φ = −6H (ρφ − V ) + Γρg − Γ ′ρφ,

ρ̇l = −3Hρl + Γ ′ρφ. (2.8)

Here Γ is the decay rate of the boson gas (i. e. uniform DM) into BEC, and Γ ′

is the decay rate of BEC into collapsed BEC (i. e. localized DM)). The former Γ
is a constant, but the latter Γ ′ appears only when the BEC satisfies the instability
condition. These rates are transport coefficients which characterize the BEC phase
transition although they should be, in principle, calculated from the Lagrangian
Eq.(1.6) and the environmental informations. Here we fix these values phenomeno-
logically in the present stage of our model∗). As is easily seen from Eq.(2.8), DE(ρφ)
and DM(ρg + ρl) are intimately related with each other in our model; original uni-
form DM(ρg) condensates into DE(ρφ), and it collapses into localized DM(ρl), which
eventually becomes a dominant component in the total DM (ρg + ρl).

There are two relevant regimes of solutions to Eq.(2.8). One is (a) the over-hill
regime, and the other is (b) the inflationary regime. The former appears when the
condensation speed is high and the condensation overshoot the potential barrier, and
the latter when it is low. A general evolution is a mixture of them; several regimes
of (a) finally followed by the regime (b). Let us now examine these regimes.

(a) Over-hill regime: This regime generally appears when the condensation
strength is faster than the potential force and the condensation overshoot the po-
tential barrier, especially in the earlier stage of the cosmic evolution. Actually, this
regime is a fixed point of the first three equations in Eq.(2.8):

φ→ ∞, ρφ → 0, ρg → 0,H → 0, a→ a∗ (2.9)

The field goes over the hill of the potential, as in Fig.1(a).
The condensation speed Γ is fast at the first stage, and the bose gas density is

simply reduced ρg ∝ e−Γ t and the cosmic friction term becomes negligible. Then,

Eq.(2.8c) yield φ̈ ≈ V ′, and φ reaches singularity within a finite time. Since φ̇
increases rapidly in the last stage of the fall, the BEC reduction rate −6H (ρφ − V ) ∝
Hφ̇2 dominates the BEC increase rate Γρg. Thus, we have eventually ρφ → 0, and
H → 0. However, actually, this virtual singularity is avoided by invoking the last
equation in Eq.(2.8).

∗) This is somewhat generalized later in section 3.2.
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Fig. 1. Schematic diagram of the evolution of BEC. (a) over-hill regime and (b) inflationary regime

are depicted. The inflation appears as a result of the balance between the condensation and the

potential force, V ′ = Γρg/φ̇.

(b) Inflationary regime: This regime appears when the condensation strength is
weaker than the potential force, especially in the later stage of the cosmic evolution.
This regime turns out to be a stable fixed point of Eq.(2.8):

φ→ φ∗,H → H∗, ρ→ 0, φ̇ → 0. (2.10)

The BEC condensed field stops and stays at an intermediate position of the potential
hill for ever, as in Fig.1(b). This mechanism is a novel type of inflation, which is
supported by the balance of the condensation speed (Γρg), and the potential force

(φ̇V ′):
V̇ = Γρg. (2.11)

Though both sides of Eq.(2.11) exponentially decay to zero, the balance itself is
automatically maintained∗).

In the actual universe, the above two kinds of regimes are realized successively.
First, the over-hill regime repeats multiple times in general until the bose gas density
is consumed and the condensation speed decreases. Eventually the condensation
force balances with the potential force, and the final inflationary regime follows.

In Fig.2(a), numerical results for the evolution of the cosmic energy densities are
plotted. Black, dark gray, and light gray curves represent, respectively in this order,
the cosmic energy densities of the bose gas (ρg), BEC (ρφ), and the localized objects
(ρl). In this example, four over-hill regimes are finally followed by the inflationary
regime.

Further, in Fig. 2(b), the evolution of the corresponding EOS parameter w ≡ p/ρ
is shown. It is clear that the BEC (ρφ) acquires the genuine DE property (i.e.
w ≈ −1), only recently z < 3. For z > 3, ρφ behaves as ideal gas (i.e. w ≈ 1).
This is because the field φ is in the stage of condensation and moving. Therefore
it possesses kinetic energy and positive pressure. Thus, a genuine DE with w ≈ −1
only appears for z > 3 despite we often call ρφ as DE and ρg + ρl as DM in this

∗) This exponentially decreasing amplitude of the balance may lead to the instability of the

inflationary regime and the autonomous termination of this regime, given some small external per-

turbations.
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Fig. 2. (a) Time evolution of various cosmic densities as a function of red shift z. This is a numerical

solution of Eq.(2.8). The red line is ρg, the green line is ρφ, and the blue line is ρl. Here we

have set m̃2
≃ 0.01, λ = −0.1, Γ̃ = 0.4. The variables with tilde are dimensionless ones defined

in the text. Several BEC collapses take place, which finally followed by a phase with constant

energy density (accelerating expansion). (b) Time evolutions of the w parameters. The green

line represents wφ ≡ pφ/ρφ as a function of z. It is apparent that BEC behaves as ideal gas in

the early stage and as cosmological constant in the later stage. Black solid line represents w of

the whole system.

paper. Thus, our model cannot be distinguished from the standard model with a
cosmological constant, as far as we observe the cosmic evolution a(t).

Now we explain the detail of our numerical calculations above and how to obtain
physical scales from them. In Eq.(2.8) we simultaneously use parameters of quite dif-
ferent orders of magnitudes, as a result of bridging microphysics to the macrophysics,
such as the plank mass mP l, cosmic expansion rate H, and the boson mass m etc.
First we normalize dimensional observables by two mass scales; m∗ for space-time,
and m0 for energy, whose orders are fixed later:

τ = m∗t, H̃ =
H

m∗
, ρ̃ =

ρ

m4
0

, m̃ =
m

m0
, φ̃ =

φ

m0
, Γ̃ =

Γ

m∗
, Γ̃ ′ =

Γ ′

m∗
, (2.12)

where m∗ and m0 are related through the gravitational constant G or plank mass
mP l :

8πG

3c2m2
∗

=
1

m4
0

or m2
0 = mplm∗ (2.13)

Then Eq.(2.8) is rewritten as

H̃2 = ρ̃g + ρ̃φ + ρ̃l

ρ̃g
′ = −3H̃ρ̃g − Γ̃ ρ̃g

ρ̃φ
′ = −3H̃

(
m∗

m0

)2

φ̃′∗φ̃′ + Γ̃ ρ̃g − Γ̃ ′ρ̃φ

ρ̃l
′ = −3H̃ρ̃l + Γ̃ ′ρ̃φ, (2.14)
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where the prime means the derivative w.r.t. τ . The ratio of the mass scales m∗/m0

appears only in the first term on the RHS of the third equation of Eq.(2.14), and this
term does not contribute since this factor is extremely small, m∗/m0 = m0/mpl ≪ 1.

The scales m0 and therefore m∗ can be fixed, from our numerical calculation, as
follows. The energy density of BEC is normalized as

ρ̃φ =

(
m∗

m0

)2

φ̃′∗φ̃′ + m̃2φ̃∗φ̃+
λ

2
(φ̃∗φ̃)2. (2.15)

We have started our calculation, in the above example of Fig.(2), with m̃ = 0.1
and obtained the numerical value for ρ̃φ at present, ρ̃φ0 = 0.000015. We identify
ρφ0 = 0.73ρcr0 with ρcr0 = 9.44 × 10−30 g/cm3, from which it follows that

m0 ≃ 0.030eV, m = m̃m0 = 0.0030eV, and m∗ = 2.09 × 10−31eV. (2.16)

As we have mentioned after Eq.(2.8), DE(ρφ) and DM(ρg + ρl) are intimately
related with each other in our model; DM(ρg) condensates into DE(ρφ), and it col-
lapses into localized DM(ρl). Therefore, it is natural to expect that the amounts
of DM and DE are almost the same. This is a kind of self-organized criticality7)

(SOC). Finally dominant DM(ρl) is composed from the quantity which had been
DE(ρφ) before.

2.3. BEC collapse

There is no degenerate pressure for bosons unlike fermions. Therefore, only the
quantum pressure, expressed in the last term on the left-hand side of Eq.(2.3) ,
induced from the Heisenberg uncertainty principle can prevent the BEC to collapse.
However, there is a maximum mass for this mechanism to work. The Compton
wavelength of the object λcompton = 2π~/ (mc) must be larger than the Schwarzschild
black hole radius or its inner-most stable radius 3

(
2GM/c2

)
. This condition defines

a characteristic mass scale

Mcritical ≈ m2
pl/m ≡MKAUP (2.17)

only below which a stable configuration is possible for BEC. This structure is well
known as a boson star.8) For example, the boson mass m = 10−3 eV gives Mcritical =
10−7M⊙, which is almost the mass of Mercury. If the object mass exceeds this critical
value, black holes are inevitably produced. There is no limit for the black hole mass.
Thus, DE black holes of any size are naturally produced in our model. However
actually, shock waves would also be naturally produced in the collapse process of
BEC. They convert the potential energy to heat and yields huge pressure, which
may prevent the collapse to black holes. We will study the initial linear instability
of BEC in the following sections. In any case, it will be true that many compact
clumps (boson stars, black holes, hot clusters) are rapidly formed after the collapse
of BEC. This fascinating scenario, early-formation of black holes and clumps, has
been extensively discussed in6) in other context.
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§3. Robustness of the BEC Cosmology

After a brief introduction of BEC cosmology in the above, we would like to argue
first the robustness and generality of the BEC model. In particular, we would like
to clarify the condition under which the BEC phase is possible in the universe. This
argument is deeply related with the basic parameters of the model: mass m of the
boson and the condensation rate Γ .

3.1. Mass constraints and the BEC condition

Let us now consider how BEC is possible in the expanding Universe. In general,
the charge density n of the boson gas is expressed as the sum of two contributions;
the particle with positive signature and the anti-particle with negative signature:

n =

∫
dp3

(2π)3
[

1

eβ(ω−µ) − 1
− 1

eβ(ω+µ) − 1
], (3.1)

which is a function of temperature 1/β and the chemical potential µ, and energy
ω =

√
p2 +m2, in units of ~ = kB = c = 1. BEC takes place when µ = m and the

critical temperature Tc or the critical density nc is determined by setting so in the
above.

In the non-relativistic regime, i.e. p2 ≪ m2, the above form yields,

nc = ζ (3/2)

(
mT

2π

)3/2

(3.2)

or Tc = (2π/m) (n/ζ (3/2))2/3 . Below Tc or above nc, the wave functions of individual
particles begin to overlap with each other, i.e. the thermal de Broglie length exceeds
the mean separation of particles,

λdB ≡
(

2π

mkT

)1/2

> r ≡ n−1/3 (3.3)

In this regime, the cosmic energy density of the non-relativistic matter has the same
dependence on the temperature:

n = n0

(
T

T0

)3/2

, (3.4)

if we assume the entropy is conserved during the expansion and therefore ρ ∝ a−3 ∝
T 3/2. Thus, provided that the cosmic temperature had been once under the critical
temperature at some moment in the non-relativistic regime, the universe would be
always under the critical temperature and BEC can initiate all the time.

The above fact sets the upper limit on the boson mass, for BEC to take place at
the present universe. Let us suppose the boson gas was in thermal equilibrium with
radiation in the far past. Suppose the boson had transformed from relativistic to non-
relativistic at time t∗ with the scale factor a∗ = a (t∗). The boson temperature TB (t)
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Fig. 3. Schematic diagram of the critical temperature Tcr and the cosmic temperature Tuniverse.

In the non-relativistic regime (m < T ), Tcr ∝ ρ2/3, Tuniv ∝ ρ2/3. In the relativistic regime

(m > T ), Tcr ∝ ρ1/2, Tuniv ∝ ρ1/4. The temperature evolution line for the universe is the same

as the adiabatic expansion.

at this time t∗ will be TB (t∗) = m = Tγ (t∗). After that time, the boson temperature
reduces as ∝ a−2, and the photon temperature Tγ (t) as ∝ a−1. Therefore, for t > t∗,

TB (t) =

(
a∗
a (t)

)2

m, Tγ (t) =

(
a0

a (t)

)
Tγ0. (3.5)

Putting the present value of radiation temperature Tγ0 = 2.73K into the above
equation, we can estimate the present temperature of the boson gas TB (t0) = TB0

as

TB0 =

(
Tγ0

m

)
Tγ0. (3.6)

The present value of the critical temperature can be estimated from the present
energy density ρ0 = 9.44 × 10−30g/cm3. The ratio of them is

TB0

Tc0
=
ζ (3/2)2/3 T 2

γ0m
2/3

2πρ
2/3
0

. (3.7)

The requirement that this ratio is smaller than 1 yields the upper limit of the boson
mass:

m <
(2π)3/2 ρ0

T 3
γ0ζ (3/2)

≈ 19eV. (3.8)

It must be noted that this upper limit does not apply to the boson which has not
been in thermal equilibrium with radiation in the past, or the boson composed from
the pair of fermions.

On the other hand in the ultra-relativistic regime, i.e. p2 ≫ m2, the critical
density becomes

nc =
mT 2

3
, (3.9)

and the cosmic energy density of the ultra-relativistic matter behaves as

n = n0

(
T

T0

)4

. (3.10)
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Therefore, contrary to the nonrelativistic regime, even if the cosmic temperature had
been once under the critical temperature at some moment in the ultra-relativistic
regime, the boson temperature in the universe would eventually goes over the critical
temperature and BEC would melt into thermal boson gas at that time. This trend
is depicted in Fig.3.

3.2. Time dependent Γ and the robustness of the BEC model

In the previous calculations,1), 5) we assumed the condensation speed Γ is a
constant parameter. However, this quantity Γ is not a simple term appearing in
a Lagrangian, but a transport coefficient, which includes all the information of the
many-body environment, e.g. temperature, density, fluctuations, etc. It should be
calculated from the quantum field theory of finite temperature and density in the
expanding universe, though such theory does not exist at present. Therefore we
take the second best method, i.e. we try all possible time-dependent Γ . Although
this does not specify Γ , we may establish some robustness of the BEC cosmological
model.

General transport coefficients would depend on the temperature and the density
of the environment. Time dependence of such global parameters can be represented
by a scale factor in the uniformly expanding universe. Therefore, possible time
dependences of the parameter Γ will be exhausted by the inclusion of the scale
factor, which normally depends in the form of power. Thus we assume

Γ = Γ̄ a (t)α (3.11)

where Γ̄ and α are constants. Even in this case, the basic mechanism of the BEC
cosmology does not change. Actually, the insertion of the expression Eq.(3.11) in
Eq.(2.8) is equivalent to recast the behavior of boson gas density, which is the source
of condensation, as

ρg ∝ a (t)−3 → ρg ∝ a (t)α−3 (3.12)

while Γ → Γ̄ is still a constant. Intuition tells us that such change of the source gas
density does not alter the scenario in essence.

In order to check this intuition, we have performed several demonstrations in
numerical methods. Results are in Fig. 4.

In general, the reaction rate reduces when the temperature decreases. Therefore
it will be natural to choose negative values for the parameter α. In all calculations
with α = −1,−2,−3, the qualitative behavior of the model, i.e. multiple BEC
collapses followed by an inflation, does not change. Quantitative changes are the
total number of BEC collapse and the identification of the present time. These
results could be easily foreseen from the fact that the change Eq.(3.12) is equivalent
to Eq.(3.11). We have also performed positive values for α which may be less relevant
in the actual universe. In this case, only α = 1 yields the qualitatively similar
behavior, but the cases for α > 1 are not clear within our calculations probably
due to numerical error.
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Fig. 4. Time evolution of various cosmic densities as a function of red shift z. Same as Fig 2(a),

but with time dependent condensation rate Γ̃ = 0.1a(t)α where α = −1,−2,−3, and +1,

respectively for (a), (b), (c), (d). Other parameters are set as m̃2
≃ 0.01, λ = −0.1.

3.3. Numerical Γ and m -robustness of BEC

Here we show the robustness of BEC on the relatively wide range of numerical
values of condensation rate Γ and boson mass m, etc.

The boson mass turns out to be 0.0024eV, 0.0030eV, 0.0041eV, 0.0033eV, 0.0019eV,
0.0024eV, respectively for the parameters (a)-(f) in Fig.5. The condensation rate Γ
turns out to be 1.411×10−32eV, 8.37×10−32eV, 4.050×10−32eV, 1.0521×10−31eV,
8.593 × 10−33eV, 2.272 × 10−31eV in the same order. The qualitative feature of our
model did not change under the above variations of parameters. Further variation
will be possible in principle, but our numerical code at present does not yield reliable
results. This applies especially the late stage of the accelerating expansion, due to
the exponentially reducing energy density.

From the above results, we notice that the physical quantities m and Γ are not
simply related with parameters m̃ and Γ̃ . Actually, the boson mass m only changes
about factor 2 while the parameter mass m̃ changes about factor 16. On the other
hand, the condensation rate Γ changes about factor 20 while the parameter Γ̃ only
changes about factor 4.

Robustness of the boson mass value 0.003eV± 0.001eV may be somewhat inter-
esting. However, we have not yet resolved the origin of this robustness; it may be due
to the intrinsic nature of our model, or it may simply represent that our numerical
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Fig. 5. The robustness of BEC on the wide range of numerical values of em, eΓ , and λ. (a) em2 =

0.01, eΓ = 0.1, λ = −0.1. (b) em2 = 0.01, eΓ = 0.4, λ = −0.1. (c) em2 = 0.01, eΓ = 0.1, λ = −1. (d)

em2 = 0.01, eΓ = 0.4, λ = −1. (e) em2 = 0.04, eΓ = 0.4, λ = −0.1. (f) em2 = 0.0025, eΓ = 0.4, λ =

−0.1.

range is too limited. Therefore, we will not specify the boson mass in the following
arguments, but leave some possible rage of mass values open for further discussions.

3.4. BEC instability and the collapse

BEC collapse is a very complicated process. During the collapse of BEC, gravi-
tational potential energy, GM2/R, is released, where M and R are typical mass and
scale of the collapsing region. If this collapse were free from shock waves, the col-
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lapse were spherical symmetric and the collapsing BEC exceeded the critical mass,
then most of the collapsing BEC would turn into black holes. However, such ideal
conditions would never be fulfilled.

If the BEC collapse takes place smoothly, and the process is adiabatic, then the
temperature of BEC is given by

T ≈ R3(1−γ) ≈M1−γργ−1, (3.13)

which is the same, if γ = 5/3, as the behavior of the adiabatic universe in Fig.(3) ,
but the opposite time direction. The boson temperature is always below the critical
temperature, T ∝ ρ2/3, and BEC is maintained.

If the BEC collapse takes place violently, and the gravitational energy always
turns into uniform thermal energy, then the process is in virtual equilibrium, and
the temperature of boson is given by

T ≈ GMm

R
≈ GM2/3mρ1/3, (3.14)

which becomes T ≈ GMm/R → m, in the limit that the system size approaches to
the Schwarzschild radius R ≈ 2GM . This means that the boson becomes relativistic.
Even in this case, the boson temperature is always below the critical temperature,
and BEC is maintained. See Fig.3.

However in the real universe, shock waves are inevitably produced and fluctu-
ations associated with the collapse would be enormous. As a result, some small
portion of collapsed BEC terns into black holes and the rest portion would become
normal boson gas. In any case, the universe becomes very clumpy at small scales.

The collapsed BEC will gravitationally attract baryons to form a cluster, as in
the standard CDM model. By contrast, at large scales, the potential is not affected
and is the same as that in the standard ΛCDM model. This point is further clarified
below.

We would like to restrict our study in the linear instability analysis in this paper.
This is the subject in the next section.

§4. Instability of BEC and large scale structure

After examining robustness of the BEC cosmological model in the above, we will
now argue how the instability of BEC, which is extending on the entire universe, can
manifest to form localized structures.

The BEC collapse inevitably takes place in the over-hill regime in our model.
These collapsed components form localized objects and become direct seeds of the
structures in the universe. Our special interest is the preferred scale of these struc-
tures. Though the full dynamics of the BEC collapse would require involved nu-
merical calculations, linear instability analysis is always tractable,,4) within semi-
analytical calculations, to which we devote in this paper.

The metric is chosen as

ds2 = (1 + 2Φ)dt2 − a2(1 − 2Φ)dx2 , (4.1)
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where Φ = Φ (t, ~x) represents the gravitational potential and a = a (t) the cosmic
scale factor. The Lagrangian for the BEC condensate mean field φ becomes, on this
metric without a source term,

L = a(t)3(1 − 2Φ)
(
(1 + 2Φ)−1|φ̇|2 − a(t)−2(1 − 2Φ)−1(∇φ) · (∇φ†)

−m2|φ|2 − λ

2
|φ|4 + Lg

)

≃ a(t)3(1 − 4Φ)φ̇2 − a(t)(∇φ)2 −m2a(t)3(1 − 2Φ)φ2

−λ
2
a(t)3(1 − 2Φ)φ4 + (1 − 2Φ)a(t)3Lg , (4.2)

where the last line is the linearized form. The source term can be negligible in our

analysis, since the BEC collapse takes place very rapidly compared to the slow steady
condensation time scale. The equation of motion for the condensate becomes, up to
the first order in Φ,

φ̈+ 3
ȧ

a
φ̇− 1

a2
∇2φ+m2(1 + 2Φ)φ+ λ(1 + 2Φ)|φ|2φ = 0 . (4.3)

The factor 1 + 2Φ in the last term, which was not in,4) plays an essential role. The
associated Poisson equation becomes

∇2Φ = 4πGa2

{
φ̇†φ̇+

∇
a
φ · ∇

a
φ† +m2|φ|2 +

λ

2
|φ|4 − ρ0

}
, (4.4)

where ρ0 is the uniform background energy density.
We now decompose the variables into the background component, with suffices

0, and the linearly perturbed component, with suffices 1, as

φ = φ0 + φ1 , (4.5)

Φ = 0 + Φ1 . (4.6)

The background is spatially uniform and only depends on time, while the perturba-
tion is time and space-dependent. The background solution satisfies, from Eqs.(4.3),
(4.4),

φ̈0 + 3
ȧ

a
φ̇0 +

(
m2 + λ|φ0|2

)
φ0 = 0 , (4.7)

φ̇†0φ̇0 +

(
m2 +

λ

4
|φ0|2

)
|φ0|2 − ρ0 = 0 . (4.8)

In these Eqs.(4.7), (4.8), the variable φ0 can be assumed to be real without generality
since all the coefficients are real. The equations of motion for the perturbations are

0 = φ̈1 + 3
ȧ

a
φ̇1 −

1

a2
∇2φ1 +m2(φ1 + 2Φ1φ0)

+ λ
(
φ2

0φ
†
1 + 2φ2

0φ1 + 2Φ1φ
3
0

)
,

1

4πGa2
∇2Φ1 = φ̇0(φ̇1 + φ̇†1) + (m2 + λ|φ0|2)φ0(φ1 + φ†1). (4.9)
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The variable φ1 is complex and Φ1 is real. Therefore we replace them by three real
functions:

φ1 = x+ iy , (4.10)

Φ1 = z , (4.11)

where x = x (t, ~r), y = y (t, ~r), and z = z (t, ~r) . These new functions x, y, z are
decomposed into Fourier modes

x = x̄ exp
(
Ωt+ i~k · ~r

)
, (4.12)

y = ȳ exp
(
Ωt+ i~k · ~r

)
, (4.13)

z = z̄ exp
(
Ωt+ i~k · ~r

)
, (4.14)

where x̄, ȳ, z̄, Ω,~k are constants. Putting these into Eqs.(4.9), we have

(
Ω2 + 3

ȧ

a
Ω +

k2

a2
+m2 + 3λφ2

0

)
x̄+ 2(m2 + λφ2

0)φ0z̄ = 0 , (4.15)

(
Ω2 + 3

ȧ

a
Ω +

k2

a2
+m2 + λφ2

0

)
ȳ = 0 , (4.16)

(
2φ̇0Ω + 2(m2 + λφ2

0)φ0

)
x̄+

k2

4πGa2
z̄ = 0 . (4.17)

Existence of a non-trivial solutions x̄, ȳ, z̄ requires that the above set of linear equa-
tions are dependent with each other. Thus we have the condition

[(
Ω2 + 3

ȧ

a
Ω +

k2

a2
+m2 + 3λφ2

0

)
k2

4πG

− 2(m2 + λφ2
0)φ0

(
2φ̇0Ω + 2(m2 + λφ2

0)φ0

)]

×
(
Ω2 + 3

ȧ

a
Ω +

k2

a2
+m2 + λφ2

0

)
= 0 , (4.18)

which determines the instability parameter Ω as a function of the wave number ~k.
If one of the solution Ω in this equation becomes positive for some ~k, such mode
becomes unstable with the time scale Ω−1∗). Since the shortest time scale for the
structure of scale l ≡ a/k to form is l/c from causality, such structure formation
would be actually possible only if Ω−1 > l. Thus the structure of linear scale l is
possible only if the condition k/a > Ω is satisfied. More precisely, the first structure
formation takes place at the shortest time scale. This condition, by setting α as a
positive constant smaller than unity,

α
k

a
= Ω with 0 < α < 1, (4.19)

∗) It should be remarked that even in the simple case a = a0 = 1, φ0 =const, Ω2 has positive

real roots and is unstable for the case of m2 < 0, λ > 0 unlike the statement in.4)
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uniquely determines the preferred linear scale a/k∗ of the structure formed after the
BEC collapse.

The expression for αk/a = Ω is solved for k, choosing the value associated with
the most unstable mode among four solutions of Ω for Eq.(4.18), as

k∗
a

=



−m2

eff +
√
m4

eff + 64πG(1 + α2)
(
m4φ2

0 − 2κm2φ4
0 + κ2φ6

0

)

2(1 + α2)




1/2

(4.20)

where adiabatic approximation H = 0, φ̇0 = 0 is utilized since the collapse time
scale is much smaller than cosmic and condensation time scales. In Eq.(4.20), we
consider the regime so that m2

eff ≡ m2 − 3κφ2
0 > 0, i.e. φ0 smaller than the value at

the inflection point of the potential V (φ). This regime is first realized in the BEC
condensation process. The above expression Eq.(4.20) can be further reduced to

k∗
a

≈ 8m2φ0

meff

√√√√πG

(
1 − 2κ

(
φ0

m

)2

+ κ2

(
φ0

m

)4
)
, (4.21)

since in general, the present mass scales, i.e. of order eV , are negligibly small in
comparison with the Plank mass 1028eV : m2

eff ≈ κφ2
0 ≈ m2 ≪ m2

pl ≈ G−1.
A rough estimate of Eq.(4.21) and of the preferred scale is possible. Setting

m2
eff ≈ φ2

0 ≈ m2, Eq.(4.21) yields the linear scale l∗ ≡ a/k∗

l∗ ≈
(mpl

m

) 1

m
≈ 1023cm ≈ 30

(
eV

m

)2

kpc. (4.22)

The resultant mass scale associated with the BEC collapse, which took place at
redshift z, would be

M∗ = ρ0z
3 4π

3
l3∗ ≈ 1.6 × 1011

( z
20

)3 ( m
eV

)−6
M⊙, (4.23)

in which strong mass dependence is apparent. Actually there are several different
scenarios for the formation of localized structures, depending on the mass m of the
boson. We suppose the first BEC collapses at about redshift z ≈ 20.

(a) If the boson mass is about 1eV, then, the typical mass of the structure will
be

M∗ ≈ 1.6 × 1011M⊙ (4.24)

which is of order of a galaxy. Some fraction of this mass turns into a black hole
and the remaining boson becomes a hot gas surrounding the black hole. This is the
typical structure expected from the BEC collapse in the present cosmological model
for this boson mass. The detail of the mass of such black holes necessitates elaborate
numerical calculations, on which we will report in a separate report in the future.

(b) If the boson mass is about 10−3eV, then the typical scale well exceeds the
size of the horizon, as easily observed from the power in Eq.(4.23). Thus, a structure
is not formed in the early stage of the BEC condensation while the condition m2

eff ≡
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m2 − 3κφ2
0 > 0 holds. In this case, BEC condensation further proceeds and crosses

over the inflection point, beyond there m2
eff becomes negative and we can no longer

use the approximation m2
eff ≈ φ2

0 ≈ m2. Then, we have to go back to Eq.(4.20),
which yields the solution

k∗
a

≈ |meff |√
1 + α2

. (4.25)

It means that the strong instability initiates immediately after the mean field crosses
over the inflection point. Thus we define the time τ as the elapsed time after crossing
the inflection point. A structure of scale a/k is formed at around τ = a/(αk).
Since the BEC is very unstable and the time scale is short, we can expand φ (τ) =
φinf + φ̇infτ + O

(
τ2
)
, where φinf is the value of the condensation at the inflection

point: i.e. m2 = 3κφ2
inf . Utilizing the relations, (k∗/a)

2 ≈
∣∣m2 − 3κφ2

∣∣ /(1 + α2) =

6κφinf φ̇infτ/(1+α2), we have τ−1 = (6κφ̇infφinfα
2/(1+α2))1/3, and therefore k/a =

(ατ)−1 = (6κφ̇infφinf/(α+α3))1/3. Putting approximate values ρ̇φ = −6H (ρφ − V )+
Γρg ≈ Γρg, and ρg ≈ ρφ ≈ m2φ2, we have

k∗
a

≈ (6κφ2Γ/(α+ α3))1/3 ≈ (m2Γ )1/3 ≈ ((10−3eV)210−32eV)1/3 ≈ 10−13eV,

(4.26)
which corresponds to the size l∗ ≈ 103km and M∗ ≈ 10−1g. Therefore, BEC collapse
cannot form macroscopic cosmological structures. These clumps would work as the
ordinary DM and the scenario of large structure formation reduces to the standard
model.

Thus the above situations can be summarized as follows. We have two Jeans
wave numbers: one is m2/mpl, which appears for the condensation φ0 smaller than
the inflection point, and (m2Γ )1/3, which appears for φ0 larger than the inflection
point. For the case (a) m ≈ 1eV, the former instability takes place and the latter
has no chance to appears. For the case (b) m ≈ 10−3eV, the former instability is
not sufficient and the latter strong instability sets in to make the BEC collapse.

(c) If the boson mass is far below 10−3eV, then we can estimate the preferred
mass scale utilizing the above scaling relation M ∝ m−2. For example, the boson of
mass 10−22eV would yield an object of the galaxy size, and 10−24eV a cluster size.
Because the mass is ultra-low, the boson would always be in the condensed phase.
Therefore the BEC has a chance to form DM directly. This consideration naturally
brings us to a popular idea that the DM around a galaxy or a cluster is formed
from scalar field with ultra-low mass.9)–11) We will leave this possibility open in this
paper, and proceed to the next subject; radiation of gravitational wave.

§5. Observational remnants of the BEC cosmology

We now turn our attention to possible observational remnants of the BEC cos-
mological history, especially in the context of BEC collapses. Most prominent effect
would be the emission of gravitational wave, which may be remaining as a fossil in
our present universe.



18 Fukuyama, Morikawa, Tatekawa

5.1. Gravitational wave associated with the BEC decay

In our model, universe repeats violent decay of BEC to localized objects in
general. Associated with this process, gravitational wave is expected to be produced.
The energy emission rate of the gravitational wave from the moving body can be
calculated from the formula

dE

dt
=

G

45c5

(
d3Dαβ

dt3

)2

(5.1)

where

Dαβ =

∫
ρ
(
3xαxβ − r2δαβ

)
dV (5.2)

is the quadrupole of the whole mass distribution. Suppose the object of linear size
R collapses with the typical speed v. Then the total energy emitted would be the
integration of the above formula during the collapsing time scale,

E ≈ dE

dt
∆t ≈

(
GM2

R2

v6

c5

)(
R

v

)
=
GM2

R

(v
c

)5
. (5.3)

This is roughly the gravitational potential energy of the extended object multiplied
by the ’efficiency’ (v/c)5. We now estimate possible remnant gravitational wave in
the present background sky, for several cases bellow.

(a) If we adopt the mass of the boson is about 1eV, then from Eq.(4.24), the
preferred scale is R = 1023cm, M = 1.6×1011M⊙. If we tentatively assume v = c/10,
then

E ≈ 1053erg (5.4)

which should be compared with the total rest energy of a star: M⊙ = 1054erg. If we
further assume that the first BEC collapse took place at redshift z ≈ 20, then the
present energy density of the gravitational wave becomes

ρgr,z=0 = ρgr,z=20 (20)−4 =
E

R3
(20)−4 = 10−21 erg

cm3
(5.5)

which should be compared with the total energy density at present, ρcr = 10−29g/cm3 =
10−8erg/cm3, thus

Ωgr,z=0 = 10−13. (5.6)

Since the strain h associated with the gravitational wave is related with

Ωgw =
ω2h2

12H2
0

, (5.7)

where ω is the frequency of the wave, we have

h ≈ 10−11 for ω ≈ (30kpc)−1 = 10−12Hz, (5.8)

h ≈ 10−26 for ω ≈ 103Hz, (5.9)
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where the frequency is estimated by naive extrapolation. This should be compared
with the present limit of the gravitational wave h ≈ 10−21 for ω ≈ 103Hz.

The gravitational background formed during the inflation is estimated14) as

Ωgw = (H/mpl)
2Ωr ≈

(
10−5

)2
10−4 = 10−14, (5.10)

and the associated strain is

h ≈ 10−27 for ω ≈ 103Hz. (5.11)

The gravitational background formed during the oscillation of the cosmic string14)

is

Ωgw = 100
(
Gµ/c2

)
Ωr ≈ 100 · 10−5 · 10−4 = 10−7. (5.12)

(b) If we adopt the mass of the boson is about 10−3eV, then from Eq.(4.26), the
preferred scale is R = 108cm, M = 10−1g. Then the present energy density of the
gravitational wave becomes

ρgr,z=0 = 10−51 erg

cm3
, Ωgr,z=0 = 10−43, (5.13)

mainly at frequency ω ≈
(
108cm

)−1 ≈ 103Hz, which is totally small and would be
never be detected.

The overall amount of energy density, as estimated in Eq.(5.6), will not affect
the present standard cosmology. However, the strain, as estimated in Eq.(5.8), may
have a chance to be detected as well as the case of gravitational wave formed in the
inflationary stage.

5.2. log-z periodicity

The BEC collapses do not take place randomly but they are periodical events in
the logarithm of cosmic time. As argued in section 2, the bose gas density is simply
reduced as ρg ∝ e−Γ t in the over-hill regime since the condensation speed Γ is faster
than the cosmic dilution time scale. Therefore ρg is simply transformed into ρφ. Just
after each collapse, new BE-condensation always begins from φ = 0 until it reaches
some critical value ρcr

φ = O (1)Vmax ≈ m4/ (−λ). Therefore the condensation energy
density behaves [ρg (t0) − ρg (t)] modulo ρcr

φ and

ρφ (t) ≈ [ρg (t0) − ρg (t)]mod ρcr
φ

≈
[
ρg (t0)

(
1 − e−Γ t

)]
mod ρcr

φ
, (5.14)

where t0 is the time when the first condensation begins.
Accordingly, we expect that each BEC collapse takes place after the time interval

∆t from the preceding collapse at time t, where ∆t is determined by the condition

ρcr
φ = ρg (t0)

(
e−Γ t − e−Γ (t+∆t)

)
(5.15)

This implies that the occurrence of the BEC collapse is periodic in the logarithm of
time, log(t). If the cosmic expansion is power law in time, i.e. a (t) ∝ tconst, then
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log(t)- periodicity directly implies log(a) and log(z) -periodicities. For example,
in the typical numerical calculation in Fig.(2), BEC collapse takes place at z =
{33.2, 20.2, 13.3, 8.89, 5.50}, which is almost log-periodic.

This log(z)-periodicity is a general consequence of our model, provided that the
over-hill regime and BEC repeats several times. Furthermore, this periodic BEC
collapse may leave its trace in the non-linear regime in forms such as the discrete
scale invariance or the hierarchical structure in the universe, provided the scale is
appropriately chosen.

As was discussed in the previous section, the preferred scale of BEC collapse
only depends on the basic parameters of the model; l∗ ≈ mpl/m

2 for m > 1eV and
l∗ ≈ (m2Γ )1/3 for m < 10−3eV. Then the sequence of the cluster produced through
BEC collapses has the series of mass proportional to z3, where z is the redshift of the
collapse. Thus, the cluster mass also has the log-periodicity, and the largest cluster
is formed at the first BEC collapse. The most interesting case would be when the
boson mass is about 1eV. Then the hierarchy of galaxies are formed, for example
in Fig.(2), M/M⊙ = {1.6 × 1011, 3.6 × 1010, 1.0 × 1010, 3.1 × 109, 7.2 × 108}. Detail
of the arguments on the observational size is a future problem. If the boson mass is
about 10−3eV, then the hierarchy would yield no interesting scales with respect to
the large scale structure formation.

§6. Summary

We have developed the cosmological model based on the Bose-Einstein Conden-
sation (BEC) from various points of view. This BEC cosmology is characterized by
(1) the unification of DE and DM, (2) their mutual conversion, (3) quantum me-
chanical condensation as a novel phase of DE, (4) violent collapse of DE, (5) log-z
periodicity of the DE collapses, (6) black hole formation from DE, (7) formation
of localized objects in high redshift regime, (8) inevitable final phase of accelerated
expansion, etc. These have been briefly explained in section 2. We have examined
this model in detail especially with respect to its robustness and instability in this
paper.

We have first examined the robustness of the model in section 3. By assuming
thermal equilibrium of the boson field and the radiation in the early universe, we set
the upper limit of the mass for the boson, which turned out to be about eV. Thus we
have showed that BEC takes place very naturally in the universe. Moreover, if the
boson has not been in equilibrium with radiation in the past, then even any value of
mass is allowed. Next we demonstrated that the BEC takes place in the wide range
of microscopic parameters of boson mass m, self coupling λ, and the condensation
rate Γ . Furthermore, we have revealed that the time dependence of Γ does not
qualitatively affect the BEC model. Thus we have been able to show the robustness
and the naturalness of the cosmological BEC model.

Then we have examined the instability of BEC in section 4. We have calculated
a preferred scale of the structure formed after the BEC collapse associated with this
instability. This scale turns out to be quite sensitive to the mass of the boson. If
the boson mass is about 1eV, the preferred scale is l∗ ≈ mpl/m

2 and it is about a
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galaxy size. If the boson mass is about 10−3eV, the scale is l∗ ≈ (m2Γ )1/3 and it
is about a gram. If the boson mass is far much smaller, there is a possibility that
DM is formed as BEC, and the preferred scale can be of galaxy or cluster size. We
have also estimated the amount of the remnant gravitational wave associated with
the BEC collapse. It turns out to be marginally observable in the near future if the
parameters of our model is most optimized, otherwise it is simply too small.

The present results as a whole, suggest that the boson mass is probably of order
10−3eV to 1eV. These mass scales are so tiny that no empirical evidence for such
boson has been found yet. However, it is potentially interesting that these mass scales
are the same order as the neutrino masses. Therefore it would be natural to consider
that the boson particle is a composite of neutrino-neutrino(or neutrino antineutrino)
pair12), 13) though this requires further investigations including the problem of how
Fermi surface can be stable in such tiny mass. We would like to further extend the
cosmological BEC model in our next paper.
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