73 research outputs found

    Photon bunching in parametric down-conversion with continuous wave excitation

    Full text link
    The first direct measurement of photon bunching (g2 correlation function) in one output arm of a spontaneous-parametric-down-conversion source operated with a continuous pump laser in the single-photon regime is demonstrated. The result is in agreement with the statistics of a thermal field of the same coherence length, and shows the feasibility of investigating photon statistics with compact cw-pumped sources. Implications for entanglement-based quantum cryptography are discussed.Comment: 7 pages, 4 figures, expanded introduction and experimental details added. Accepted for publication in Phys.Rev.

    Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands

    Get PDF
    Magmas containing the components needed to form porphyry copper deposits are relatively common within arcs, yet mineralising events are uncommon within the long-lived magmatic systems that host them. Understanding what causes the transition from barren to productive intrusions is critical to the development of conceptual deposit models. We have constrained the tempo of pre- and syn-mineralisation magmatic events in relationship to the thermal evolution of the plutonic body that underlies one of the world's youngest exposed plutonic–porphyry systems, the Inamumu Zoned Pluton, Koloula Porphyry Prospect, Solomon Islands. High precision ID-TIMS U–Pb dates of texturally and chemically characterised zircons indicate pluton emplacement over 50% crystals) state, past the point of rheological lock-up. We estimate that thermal rejuvenation of the deeper high-crystallinity magma and generation of a mobile melt fraction may have occurred ≀10 kyr before its transport and emplacement within the porphyry environment. The underlying pluton likely cooled and returned to high-crystallinity states prior to subsequent remobilisation-emplacement events. Titanium-in-zircon geothermometry and whole-rock geochemistry suggest pre-mineralisation intrusions were remobilised by mixing of a silicic magma with a high-temperature, less-evolved melt. In contrast, syn-mineralisation melts were most likely remobilised by the percolation of hot volatiles exsolved from contemporaneous less-evolved intrusions cooling beneath the crystalline silicic magma. The evidence for the rapid thermal rejuvenation and long term storage of highly crystalline silicic magmas is consistent with previous studies that indicate two components of exsolved volatiles contribute to ore forming fluids. We conclude that the liberation of crystal-rich porphyry copper deposit forming magmas, and the addition of the chemical components required for ore formation, are intrinsically linked to the volatiles released during the recharge of less-evolved melt into a highly crystalline silicic magma

    High coherence photon pair source for quantum communication

    Full text link
    This paper reports a novel single mode source of narrow-band entangled photon pairs at telecom wavelengths under continuous wave excitation, based on parametric down conversion. For only 7 mW of pump power it has a created spectral radiance of 0.08 pairs per coherence length and a bandwidth of 10 pm (1.2 GHz). The effectively emitted spectral brightness reaches 3.9*10^5 pairs /(s pm). Furthermore, when combined with low jitter single photon detectors, such sources allow for the implementation of quantum communication protocols without any active synchronization or path length stabilization. A HOM-Dip with photons from two autonomous CW sources has been realized demonstrating the setup's stability and performance.Comment: 12 pages, 4 figure

    High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology

    Get PDF
    Cassiterite (SnO2) is the most common ore phase of Sn. Typically containing 1–100 ”g g−1 of uranium and relatively low concentrations of common Pb, cassiterite has been increasingly targeted for U–Pb geochronology, principally via microbeam methods, to understand the timing and durations of granite-related magmatic–hydrothermal systems throughout geological time. However, due to the extreme resistance of cassiterite to most forms of acid digestion, there has been no published method permitting the complete, closed-system decomposition of cassiterite under conditions in which the basic necessities of measurement by isotope dilution can be met, leading to a paucity of reference and validation materials. To address this a new low blank (&lt; 1 pg Pb) method for the complete acid decomposition of cassiterite utilising HBr in the presence of a mixed U–Pb tracer, U and Pb purification, and thermal ionisation mass spectrometry (TIMS) analyses has been developed. Decomposition rates have been experimentally evaluated under a range of conditions. A careful balance of time and temperature is required due to competing effects (e.g. HBr oxidation), yet the decomposition of 500 ”m diameter fragments of cassiterite is readily achievable over periods comparable to zircon decomposition. Its acid-resistant nature can be turned into an advantage by leaching common Pb-bearing phases (e.g. sulfides, silicates) without disturbing the U–Pb systematics of the cassiterite lattice. The archetypal Sn–W greisen deposit of Cligga Head, SW England, is used to define accuracy relative to chemical abrasion–isotope dilution–thermal ionisation mass spectrometry (CA-ID-TIMS) zircon U–Pb ages and demonstrates the potential of this new method for resolving high-resolution timescales (&lt;0.1 %) of magmatic–hydrothermal systems. However, data also indicate that the isotopic composition of initial common Pb varies significantly, both between crystals and within a single crystal. This is attributed to significant fluid–rock interactions and the highly F-rich acidic nature of the hydrothermal system. At microbeam precision levels, this issue is largely unresolvable and can result in significant inaccuracy in interpreted ages. The ID-TIMS U–Pb method described herein can, for the first time, be used to properly characterise suitable reference materials for microbeam cassiterite U–Pb analyses, thus improving the accuracy of the U–Pb cassiterite chronometer as a whole.</p

    Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode

    Get PDF
    A simple scheme for conditional generation of nonclassical light with sub-Poissonian photon-number statistics is proposed. The method utilizes entanglement of signal and idler modes in two-mode squeezed vacuum state generated in optical parametric amplifier. A quadrature component of the idler mode is measured in balanced homodyne detector and only those experimental runs where the absolute value of the measured quadrature is higher than certain threshold are accepted. If the threshold is large enough then the conditional output state of signal mode exhibits reduction of photon-number fluctuations below the coherent-state level.Comment: 7 pages, 6 figures, REVTe

    Quantum and Classical Noise in Practical Quantum Cryptography Systems based on polarization-entangled photons

    Full text link
    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how ideal polarization entanglement in spontaneous parametric downconversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Because all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.Comment: Rev Tex Style, 2 columns, 7 figures, (a modified version will appear on PRA

    Long-distance entanglement-based quantum key distribution over optical fiber

    Get PDF
    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-”m telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key

    Quantum Cryptography using entangled photons in energy-time Bell states

    Full text link
    We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasability in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using 4-dimensional energy-time states, no fast random change of bases is required in our setup : Nature itself decides whether to measure in the energy or in the time base.Comment: 4 pages including 2 figure

    Magmatic, Metamorphic and Structural History of the Variscan Lizard Ophiolite and Metamorphic Sole, Cornwall, UK

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The field data, electron-microprobe analysis data, the CA-ID-TIMS and laser ablation U-Pb data and XRF data used for structural analysis, geochronology, geochemistry and thermobarometry in the study are currently being archived at Oxford Research Archive for Data (ORA-Data). It can be accessed here: https://doi.org/10.5287/bodleian:0zwDDM7QmThe Lizard ophiolite, Cornwall, South-West England, is the largest and best-preserved ophiolite within the Variscan orogenic belt. It forms part of the Rheic-Rhenohercynian suture zone, and was obducted northwestward onto the passive continental margin of Avalonia (Laurussia) during the Middle Devonian. It comprises an almost complete thrust slice of oceanic crust with sheeted dykes, gabbros, Moho transition sequence, and upper-mantle peridotites, underlain by a metamorphic sole. Despite the importance of the Lizard ophiolite in understanding Variscan tectonics, the origin and age of the Lizard ophiolite are debated. We present new field observations, structural maps and cross-sections of the Lizard ophiolite from extensive re-mapping, integrated with U–Pb geochronology, petrology, thermobarometry, and whole rock geochemistry. We report new U–Pb zircon (CA-ID-TIMS and LA-ICPMS) ages of 386.80 ± 0.25/0.31/0.52 Ma (Givetian) from a plagiogranite dyke intruding the Crousa Gabbros at Porthoustock, and 395.08 ± 0.14/0.22/0.47 Ma (Emsian) from partial melts of the metamorphic sole Landewednack Amphibolites at Mullion Cove. These ages, respectively, precisely date the formation of the Lizard ophiolite oceanic crust, and the age of cooling post peak-metamorphism of the sole. Petrological modeling on the Landewednack Amphibolites suggests peak metamorphic conditions of 10 ± 2 kbar and 600 ± 75°C. We demonstrate that the Lizard ophiolite formed as a supra-subduction zone ophiolite overlying an inverted metamorphic sole, and we combine our observations and data into a new geodynamic model for the formation and obduction of the ophiolite. The current data supports an induced subduction initiation model.Natural Environment Research Council (NERC)University of OxfordLeverhulme Trus
    • 

    corecore