258 research outputs found
Reanalysis of Data Taken by the CANGAROO 3.8 Meter Imaging Atmospheric Cherenkov Telescope: PSR B1706-44, SN 1006, and Vela
We have reanalyzed data from observations of PSR B1706-44, SN 1006, and the
Vela pulsar region made with the CANGAROO 3.8 m imaging atmospheric Cherenkov
telescope between 1993 and 1998 in response to the results reported for these
sources by the H.E.S.S. collaboration. In our reanalysis, in which gamma-ray
selection criteria have been determined exclusively using gamma-ray simulations
and OFF-source data as background samples, no significant TeV gamma-ray signals
have been detected from compact regions around PSR B1706-44 or within the
northeast rim of SN 1006. We discuss reasons why the original analyses gave the
source detections. The reanalysis did result in a TeV gamma-ray signal from the
Vela pulsar region at the 4.5 sigma level using 1993, 1994, and 1995 data. The
excess was located at the same position, 0.13 deg. to the southeast of the Vela
pulsar, as that reported in the original analysis. We have investigated the
effect of the acceptance distribution in the field of view of the 3.8 m
telescope, which rapidly decreases toward the edge of the field of the camera,
on the detected gamma-ray morphology. The expected excess distribution for the
3.8 m telescope has been obtained by reweighting the distribution of HESS
J0835-455 measured by H.E.S.S. with the acceptance of the 3.8 m telescope. The
result is morphologically comparable to the CANGAROO excess distribution,
although the profile of the acceptance-reweighted H.E.S.S. distribution is more
diffuse than that of CANGAROO. The integral gamma-ray flux from HESS J0835-455
has been estimated for the same region as defined by H.E.S.S. from the
1993-1995 data of CANGAROO to be F(> 4.0 +/- 1.6 TeV) = (3.28 +/- 0.92) x
10^{-12} photons cm^{-2} s^{-1}, which is statistically consistent with the
integral flux obtained by H.E.S.S.Comment: Published in ApJ, minor improvement
An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays
Photon imaging for MeV gammas has serious difficulties due to huge
backgrounds and unclearness in images, which are originated from incompleteness
in determining the physical parameters of Compton scattering in detection,
e.g., lack of the directional information of the recoil electrons. The recent
major mission/instrument in the MeV band, Compton Gamma Ray
Observatory/COMPTEL, which was Compton Camera (CC), detected mere
persistent sources. It is in stark contrast with 2000 sources in the GeV
band. Here we report the performance of an Electron-Tracking Compton Camera
(ETCC), and prove that it has a good potential to break through this stagnation
in MeV gamma-ray astronomy. The ETCC provides all the parameters of
Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter
Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx),
which CCs cannot measure, is also obtained, and is found to be indeed helpful
to reduce the background under conditions similar to space. Accordingly the
significance in gamma detection is improved severalfold. On the other hand, SPD
is essential to determine the point-spread function (PSF) quantitatively. The
SPD resolution is improved close to the theoretical limit for multiple
scattering of recoil electrons. With such a well-determined PSF, we demonstrate
for the first time that it is possible to provide reliable sensitivity in
Compton imaging without utilizing an optimization algorithm. As such, this
study highlights the fundamental weak-points of CCs. In contrast we demonstrate
the possibility of ETCC reaching the sensitivity below erg
cm s at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa
TeV Astrophysics Constraints on Planck Scale Lorentz Violation
We analyze observational constraints from TeV astrophysics on Lorentz
violating nonlinear dispersion for photons and electrons without assuming any a
priori equality between the photon and electron parameters. The constraints
arise from thresholds for vacuum Cerenkov radiation, photon decay and
photo-production of electron-positron pairs. We show that the parameter plane
for cubic momentum terms in the dispersion relations is constrained to an order
unity region in Planck units. We find that the threshold configuration can
occur with an asymmetric distribution of momentum for pair creation, and with a
hard photon for vacuum Cerenkov radiation.Comment: 4 pages, RevTeX4, 1 figure. Some references and a footnote added,
improved discussion on the photon annihilation and GZK cutoff. Minor changes
of wording. Main results unchanged. Version to appear as a Rapid
Communication in PR
Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs
We have developed a position-sensitive scintillation camera with a large area
absorber for use as an advanced Compton gamma-ray camera. At first we tested
GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under
various conditions: the method of surface polishing, the concentration of Ce,
and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only
0.5 mol% Ce, and its surface polished by chemical etching as the scintillator
of our camera. We also made a 1616 cm scintillation camera which
consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the
each of which had 88 anodes with a pitch of 6 mm and coupled to
88 arrays of pixelated 613 mm GSO(Ce) scintillators.
For the readout system of the 576 anodes of the PMTs, we used chained resistors
to reduce the number of readout channels down to 48 to reduce power
consumption. The camera has a position resolution of less than 6mm and a
typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large
area of 1616 cm. %to choose the best scintillator for our project.
Furthermore we constructed a 1616 array of 313 mm
pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had
the position resolution of less than 3mm, over an area of 55 cm,
except for some of the edge pixels; the energy resolution was typically 13%
(FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM
Evidence of TeV gamma-ray emission from the nearby starburst galaxy NGC 253
TeV gamma-rays were recently detected from the nearby normal spiral galaxy
NGC 253 (Itoh et al., 2002). Observations to detect the Cherenkov light images
initiated by gamma-rays from the direction of NGC 253 were carried out in 2000
and 2001 over a total period of 150 hours. The orientation of images in
gamma-ray--like events is not consistent with emission from a point source, and
the emission region corresponds to a size greater than 10 kpc in radius. Here,
detailed descriptions of the analysis procedures and techniques are given.Comment: 16 pages, 27 figures, aa.cl
An amplitude analysis of the reaction
A simple partial wave amplitude analysis of has been performed for data in the range p_{\sl lab} = 360 -- 1000
MeV/c. Remarkably few partial waves are required to fit the data, while the
number of required values barely changes over this energy range. However,
the resulting set of partial wave amplitudes is not unique. We discuss possible
measurements with polarized beam and target which will severely restrict and
help resolve the present analysis ambiguities. New data from the reaction
alone, are insufficient for that
purpose.Comment: 16 pages (revtex), 8 figures available on request, submitted to Phys.
Rev.
CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44
Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov
Telescope has detected extended emission of TeV gamma rays in the vicinity of
the pulsar PSR B170644. The strength of the signal observed as
gamma-ray-like events varies when we apply different ways of emulating
background events. The reason for such uncertainties is argued in relevance to
gamma-rays embedded in the "off-source data", that is, unknown sources and
diffuse emission in the Galactic plane, namely, the existence of a complex
structure of TeV gamma-ray emission around PSR B170644.Comment: 10 pages, 13 figures, to be published in Ap
TeV observations of Centaurus A
We have searched for TeV gamma-rays from Centaurus A and surrounding region
out to +/- 1.0 deg using the CANGAROO 3.8m telescope. No evidence for TeV
gamma-ray emission was observed from the search region, which includes a number
of interesting features located away from the tracking centre of our data. The
3 sigma upper limit to the flux of gamma-rays above 1.5 TeV from an extended
source of radius 14' centred on Centaurus A is 1.28e-11 photons cm^-2 s^-1.Comment: 4 pages. Astroparticle Physics, accepted for publication. Some upper
limits overestimated by factor 2-4 in original version astro-ph/9901316. Now
correcte
- âŠ