830 research outputs found

    ESTIMATING GENOTYPIC RANKS BY NONPARAMETRIC STABILITY ANALYSIS IN BREAD WHEAT (TRITICUM AESTIVUM L.)

    Get PDF
    This study was carried out to determine the ranks of 9 bread wheat (Triticum aestivum L.) genotypes across eleven environments in Central Anatolia, Turkey, in the 2000-2002 growing seasons. Experimental layout was a randomized complete block design with four replications. Analysis of Non parametric stability revealed that genotypes 4 and 8 were most stable and well adapted across eleven environments. In addition, it was concluded that plots obtained by both mean yield (kg ha-1) vs. S1 (1) and mean yield (kg ha-1) vs. S2 (2) values could be enhanced visual efficiency of selection based on genotype x environment interaction

    ESTIMATING GENOTYPIC RANKS BY NONPARAMETRIC STABILITY ANALYSIS IN BREAD WHEAT (TRITICUM AESTIVUM L.)

    Get PDF
    This study was carried out to determine the ranks of 9 bread wheat (Triticum aestivum L.) genotypes across eleven environments in Central Anatolia, Turkey, in the 2000-2002 growing seasons. Experimental layout was a randomized complete block design with four replications. Analysis of Non parametric stability revealed that genotypes 4 and 8 were most stable and well adapted across eleven environments. In addition, it was concluded that plots obtained by both mean yield (kg ha-1) vs. S1 (1) and mean yield (kg ha-1) vs. S2 (2) values could be enhanced visual efficiency of selection based on genotype x environment interaction

    Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    Get PDF
    Cataloged from PDF version of article.Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and the capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities. VC 2014 American Vacuum Society

    Synthesis, characterization and antibacterial investigation of silver-copper nanoalloys

    Get PDF
    Cataloged from PDF version of article.Ag-Cu nanoalloys were synthesized by chemical co-reduction of their metal salts in aqueous solution with hydrazine hydrate, in the presence of complexing agent and stabilizer, preventing the oxidation of copper, as revealed by XPS. Their antibacterial behavior was tested against Escherichia coli strains, attesting far better ability of the Ag-Cu compared to Ag-only nanoparticles. © 2011 The Royal Society of Chemistry

    Satisfying due-dates in the presence of sequence dependent family setups with a special comedown structure

    Get PDF
    Cataloged from PDF version of article.This paper addresses a static, n-job, single-machine scheduling problem with sequence dependent family setups. The setup matrix follows a special structure where a constant setup is required only if a job from a smaller indexed family is an immediate successor of one from a larger indexed family. The objective is to minimize the maximum lateness (Lmax). A two-step neighborhood search procedure and an implicit enumeration scheme are proposed. Both procedures exploit the problem structure. The enumeration scheme produces optimum solutions to small and medium sized problems in reasonable computational times, yet it fails to perform efficiently in larger instances. Computational results show that the heuristic procedure is highly effective, and is efficient even for extremely large problems. 2006 Elsevier Ltd. All rights reserved

    Redesigning Large-Scale Multimodal Transit Networks with Shared Autonomous Mobility Services

    Full text link
    Public transit systems have faced challenges and opportunities from emerging Shared Autonomous Mobility Services (SAMS). This study addresses a city-scale multimodal transit network design problem, with shared autonomous vehicles as both transit feeders and a direct interzonal mode. The framework captures spatial demand and modal characteristics, considers intermodal transfers and express services, determines transit infrastructure investment and path flows, and designs transit routes. A system-optimal multimodal transit network is designed with minimum total door-to-door generalized costs of users and operators, while satisfying existing transit origin-destination demand within a pre-set infrastructure budget. Firstly, the geography, demand, and modes in each clustered zone are characterized with continuous approximation. Afterward, the decisions of network link investment and multimodal path flows in zonal connection optimization are formulated as a minimum-cost multi-commodity network flow (MCNF) problem and solved efficiently with a mixed-integer linear programming (MILP) solver. Subsequently, the route generation problem is solved by expanding the MCNF formulation to minimize intramodal transfers. To demonstrate the framework efficiency, this study uses transit demand from the Chicago metropolitan area to redesign a multimodal transit network. The computational results present savings in travelers' journey time and operators' costs, demonstrating the potential benefits of collaboration between multimodal transit systems and SAMS.Comment: 44 pages, 15 figures, under review for the 25th International Symposium on Transportation and Traffic Theory (ISTTT25

    Vancomycin-resistant enterococci colonization in patients with hematological malignancies: screening and its cost-effectiveness

    Get PDF
    Background and objective: We evaluated the rates of vancomycin-resistant enterococci (VRE) colonization and VRE related bacteremia in patients with hematological malignancies in terms of routine screening culture and its cost-effectiveness.Materials and Methods: All patients of the hematology department who were older than 14 years of age and who developed at least one febrile neutropenia episode during chemotherapy for hematological cancers between November 2010 and November 2012 were evaluated retrospectively.Results: We retrospectively analyzed 282 febrile episodes in 126 neutropenic patients during a two-year study period. The study included 65 cases in the first study-year and 78 cases in the second study-year. The numbers of colonization days and colonized patient were 748 days of colonization in 29 patients (44%) in the first study-year and 547 colonization days in 21 patients (26%) in the second study-year, respectively. Routine screening culture for VRE cost 4516,4(427cultures)inthe firststudyyear,4516,4 (427 cultures) in the first study-year, 5082,7 (504 cultures) in the second study-year depending on the number of patients and their length of stay.Conclusion: In line with our study results, routine screening of hematological patients for VRE colonization is not costeffective. Routine surveillance culture for VRE should be considered with respect to the conditions of health care setting.Keywords: Hematological patients, febrile neutropenia, vancomycin-resistant enterococci, vancomycin-sensitive enterococci, bacteremia, colonization

    Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage

    Get PDF
    Plastic pollution is becoming a universal threat affecting wildlife, marines, the atmosphere, soil, and human wellbeing. The insufficient waste management traditions, along with a growth in the "throw-away" and "single -use" culture, exacerbate the problem. Meanwhile, the fast-growing energy storage industry, such as the lithium -ion battery (LIB), requires renewable resources to provide a steady and reliable production supply chain. This work introduces a scalable industrial mature route to transform polyethylene terephthalate (PET) plastic waste into a superporous activated carbon material for rechargeable LIBs. We characterized the analytical properties of the waste-derived carbon material and used it to develop LIB anodes. Then, we generated carbon-silicon com-posite anodes by impregnating silicon nanoparticles (SiNPs) into the superporous connected architecture network. We conducted density functional-based tight-binding (DFTB+) quantum chemical calculations to elucidate the binding interactions between PET and SiNPs. By implementing electrochemical impedance spec-troscopy (EIS), galvanostatic intermittent titration technique (GITT), and differential capacity analysis (DCA), we investigated the root causes of the degradation mechanisms of the material. Finally, our techno-economical study highlights the merits of a sustainable approach for transferring waste materials into valuable products such as energy storage. This work can create further research and development for recycling plastic wastes towards scalable stationary battery storage with the benefits of environmental sustainability and circular economics

    Genetic diversity of blastocystis in livestock and zoo animals.

    Get PDF
    Blastocystis is a common unicellular anaerobic eukaryote that inhabits the large intestine of many animals worldwide, including humans. The finding of Blastocystis in faeces in mammals and birds has led to proposals of zoonotic potential and that these hosts may be the source of many human infections. Blastocystis is, however, a genetically diverse complex of many distinct organisms (termed subtypes; STs), and sampling to date has been limited, both geographically and in the range of hosts studied. In order to expand our understanding of host specificity of Blastocystis STs, 557 samples were examined from various non-primate animal hosts and from a variety of different countries in Africa, Asia and Europe. STs were identified using 'barcoding' of the small subunit rRNA gene using DNA extracted either from culture or directly from faeces. The host and geographic range of several STs has thereby been greatly expanded and the evidence suggests that livestock is not a major contributor to human infection. Two new STs were detected among the barcode sequences obtained; for these, and for three others where the data were incomplete, the corresponding genes were fully sequenced and phylogenetic analysis was undertaken

    Synthesis, characterization and antibacterial investigation of silver-copper nanoalloys

    Get PDF
    Ag-Cu nanoalloys were synthesized by chemical co-reduction of their metal salts in aqueous solution with hydrazine hydrate, in the presence of complexing agent and stabilizer, preventing the oxidation of copper, as revealed by XPS. Their antibacterial behavior was tested against Escherichia coli strains, attesting far better ability of the Ag-Cu compared to Ag-only nanoparticles. © 2011 The Royal Society of Chemistry
    corecore