222 research outputs found

    A statistical study of convective and dynamic instabilities in the polar upper mesosphere above Tromsø

    Get PDF
    We have studied the convective (or static) and dynamic instabilities between 80 and 100 km above Tromsø (69.6° N, 19.2° E) using temperature and wind data of 6 min and 1 km resolutions primarily almost over a solar cycle obtained with the sodium lidar at Tromsø. First, we have calculated Brunt–Väisälä frequency (N) for 339 nights obtained from October 2010 to December 2019, and the Richardson number (Ri) for 210 nights obtained between October 2012 to December 2019. Second, using those values (N and Ri), we have calculated probabilities of the convective instability (N2<0) and the dynamic instability (0≤Ri<0.25) that can be used for proxies for evaluating the atmospheric stability. The probability of the convective instability varies from about 1% to 24% with a mean value of 9%, and that of the dynamic instability varies from 4 to 20% with a mean value of 10%. Third, we have compared these probabilities with the F10.7 index and local K-index. The probability of the convective instability shows a dependence (its correlation coefcient of 0.45) of the geomagnetic activity (local K-index) between 94 and 100 km, suggesting an auroral infuence on the atmospheric stability. The probability of the dynamic instability shows a solar cycle dependence (its correlation coefcient being 0.54). The probability of the dynamic instability shows the dependence of the 12 h wave amplitude (meridional and zonal wind components) (C.C.=0.52). The averaged potential energy of gravity waves shows decrease with height between 81 and 89 km, suggesting that dissipation of gravity waves plays an important role (at least partly) in causing the convective instability below 89 km. The probability of the convective instability at Tromsø appears to be higher than that at middle/low latitudes, while the probability of the dynamic instability is similar to that at middle/low latitudes

    Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions

    Get PDF
    Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells

    A patient with spontaneous rupture of the esophagus and concomitant gastric cancer whose life was saved: case of report and review of the literature in Japan

    Get PDF
    A 71-year-old man suddenly developed abdominal pain and vomiting on drinking soda after a meal, and visited a physician. Cervical subcutaneous and mediastinal emphysemas were observed on CT, and the patient was transferred to the emergency medical center of our hospital on the same day. Esophagography was performed at our department. A ruptured region was identified on the left side of the lower thoracic esophagus, and surgery was emergently performed employing sequential left thoracoabdominal incision. The chest wall was adhered due to inflammation, and large amounts of residual food and sloughing were present in the thoracic cavity and mediastinum. Moreover, necrotic changes were noted in the superior through inferior mediastinum. An about 2-cm rupture site was confirmed on the left side of the lower thoracic esophagus and closed by suture and filling with pediculate omentum. The presence of a tumorous lesion located mainly in the body of the stomach and lymph node enlargement were also diagnosed before surgery, for which gastric and intestinal fistulae were inserted to prepare for the second-stage surgery. The patient was admitted to an ICU after surgery. ARDS and MRSA-induced pneumonia and enteritis concomitantly developed but remitted. Curative surgery for gastric cancer was performed at 40 POD. Spontaneous rupture of the esophagus is relatively rare and that complicated by gastric caner is very rare, with only six cases being reported in Japan. Herein, we report the case

    Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater

    Get PDF
    Unique properties of micro- and nanobubbles (MNBs), such as a high adsorption of impurities on their surface, are difficult to verify because MNBs are too small to observe directly. We thus used a transmission electron microscope (TEM) with the freeze-fractured replica method to observe oxygen (O2) MNBs in solutions. MNBs in pure water and in 1% NaCl solutions were spherical or oval. Their size distribution estimated from TEM images close to that of the original solution is measured by light-scattered methods. When we applied this technique to the observation of O2 MNBs formed in the wastewater of a sewage plant, we found the characteristic features of spherical MNBs that adsorbed surrounding impurity particles on their surface

    Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta)

    Get PDF
    Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems

    Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

    Get PDF
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests

    Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests

    Get PDF
    The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests
    corecore