2,933 research outputs found

    Topological susceptibility at zero and finite temperature in the Nambu-Jona-Lasinio model

    Full text link
    We consider the three flavor Nambu-Jona-Lasinio model with the 't Hooft interaction incorporating the U(1)_A anomaly. In order to set the coupling strength of the 't Hooft term, we employ the topological susceptibility χ\chi instead of the eta' meson mass. The value for χ\chi is taken from lattice simulations. We also calculate χ\chi at finite temperature within the model. Comparing it with the lattice data, we extract information about the behavior of the U(1)_A anomaly at finite temperature. We conclude that within the present framework, the effective restoration of the U(1)_A symmetry does not necessarily take place even at high temperature where the chiral symmetry is restored.Comment: 9 pages, 14 figures, to be published in Phys.Rev.

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Earthquake fault rock indicating a coupled lubrication mechanism

    No full text
    International audienceA pseudotachylyte bounded by a carbonate-matrix implosion breccia was found at a fossilized out-of-sequence thrust in the Shimanto accretionary complex, Japan. This occurrence resulted from the following events: first implosion of host rock due to interstitial fluid pressure increase and asymmetric fracturing; second, Ca-Fe-Mg carbonate precipitation; and third, frictional melting. The rock-record suggests that these events took place in a single seismogenic slip event. Resulting from abrupt drop in fluid pressure after implosion, hydro-fracturing and fluid escape, recovered high effective friction promoted melting during fault movement. Coexistence of fluid implosion breccia and pseudotachylyte has never been reported from continental pseudotachylytes, but might be characteristic from hydrous seismogenic faults in subduction zones

    Thermodynamic evolution of cosmological baryonic gas: I. Influence of non-equipartition processes

    Full text link
    Using N-body/hydrodynamic simulations, the influence of non-equipartition processes on the thermal and dynamical properties of cosmological baryonic gas is investigated. We focus on a possible departure from equilibrium between electrons, ions and neutral atoms in low temperature (10^4-10^6 K) and weakly ionized regions of the intergalactic medium. The simulations compute the energy exchanges between ions, neutrals and electrons, without assuming thermal equilibrium. They include gravitation, shock heating and cooling processes, and follow self-consistently the chemical evolution of a primordial composition hydrogen-helium plasma without assuming collisional ionization equilibrium. At high redshift, a significant fraction of the intergalactic medium is found to be warmer and weakly ionized in simulations with non-equipartition processes than in simulations in which the cosmological plasma is considered to be in thermodynamic equilibrium. With a semi-analytical study of the out of equilibrium regions we show that, during the formation of cosmic structures, departure from equilibrium in accreted plasma results from the competition between the atomic cooling processes and the elastic processes between heavy particles and electrons. Our numerical results are in agreement with this semi-analytical model. Therefore, since baryonic matter with temperatures around 10^4 K is a reservoir for galaxy formation, non-equipartition processes are expected to modify the properties of the objects formed.Comment: 15 pages, 16 figures. Accepted for publication in A&A. For a version with high-resolution figures, see http://www.raunvis.hi.is/~courty/series.htm

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1−x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Non-Thermal Emission from Relativistic Electrons in Clusters of Galaxies: A Merger Shock Acceleration Model

    Get PDF
    We have investigated evolution of non-thermal emission from relativistic electrons accelerated at around the shock fronts during merger of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles to extend radio halos. In the contracting phase, radio halos are located at the hot region of ICM, or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and shows rather diffuse distribution.Comment: 19 pages, 5 figures, accepted for publication in Ap

    Self-Energy Effects on the Low- to High-Energy Electronic Structure of SrVO3

    Full text link
    The correlated electronic structure of SrVO3 has been investigated by angle-resolved photoemission spectroscopy using in-situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ~60 meV below the Fermi level (EF) and a broad so-called "high-energy kink" ~0.3 eV below EF as in the high-Tc cuprates although SrVO3 does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ~0.7 eV which is attributed to electron-electron interaction and gives rise to the ~0.3 eV "kink" in the band dispersion as well as the incoherent peak ~1.5eV below EF. The present analysis enables us to obtain consistent picture both for the incoherent spectra and the band renormalization.Comment: 5 pages, 3 figure
    • …
    corecore