193 research outputs found

    Far-Infrared Spectroscopy in Spin-Peierls Compound CuGeO_3 under High Magnetic Fields

    Full text link
    Polarized far-infrared (FIR) spectroscopic measurements and FIR magneto-optical studies were performed on the inorganic spin-Peierls compound CuGeO_3. An absorption line, which was found at 98 cm1^{-1} in the dimerized phase (D phase), was assigned to a folded phonon mode of B3u_{3u} symmetry. The splitting of the folded mode into two components in the incommensurate phase (IC phase) has been observed for the first time. A new broad absorption centered at 63 cm1^{-1} was observed only in the Eb{\bf E}\parallel b axis polarization, which was assigned to a magnetic excitation from singlet ground state to a continuum state.Comment: 9 pages multicolREVTeX, 10 figure

    Energy Dissipation Burst on the Traffic Congestion

    Get PDF
    We introduce an energy dissipation model for traffic flow based on the optimal velocity model (OV model). In this model, vehicles are defined as moving under the rule of the OV model, and energy dissipation rate is defined as the product of the velocity of a vehicle and resistant force which works to it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the submitted for

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    Rudra Interrupts Receptor Signaling Complexes to Negatively Regulate the IMD Pathway

    Get PDF
    Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors

    Molecular evolution of vertebrate sex-determining genes

    Get PDF
    Y-linked Dmy (also called dmrt1bY) in the teleost fish medaka, W-linked Dm-W in the African clawed frog (Xenopus laevis), and Z-linked Dmrt1 in the chicken are all sex chromosome-linked Dmrt1 homologues required for sex determination. Dmy and Dm-W both are Dmrt1 palalogues evolved through Dmrt1 duplication, while chicken Dmrt1 is a Z-linked orthologue. The eutherian sex-determining gene, Sry, evolved from an allelic gene, Sox3. Here we analyzed the exon–intron structures of the Dmrt1 homologues of several vertebrate species through information from databases and by determining the transcription initiation sites in medaka, chicken, Xenopus, and mouse. Interestingly, medaka Dmrt1 and Dmy and Xenopus Dm-W and Dmrt1 have a noncoding-type first exon, while mouse and chicken Dmrt1 do not. We next compared the 5′-flanking sequences of the Dmrt1 noncoding and coding exons 1 of several vertebrate species and found conservation of the presumptive binding sites for some transcription factors. Importantly, based on the phylogenetic trees for Dmrt1 and Sox3 homologues, it was implied that the sex-determining gene Dmy, Dm-W, and Sry have a higher substitution rate than thier prototype genes. Finally, we discuss the evolutionary relationships between vertebrate sex chromosomes and the sex-determining genes Dmy/Dm-W and Sry, which evolved by neofunctionalization of Dmrt1 and Sox3, respectively, for sex determining function. We propose a coevolution model of sex determining gene and sex chromosome, in which undifferentiated sex chromosomes easily allow replacement of a sex-determining gene with another new one, while specialized sex chromosomes are restricted a particular sex-determining gene

    Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The EGFR and HER2 genes are located on chromosomes 7 and 17, respectively. They are therapeutic targets in some tumors. The TOP2A gene, which is located near HER2 on chromosome 17, is the target of many chemotherapeutic agents, and co-amplification of HER2 and TOP2A has been described in several tumor types. Herein, we investigated the gene status of EGFR, HER2, and TOP2A in Chinese gastric carcinoma patients. We determined the rate of polysomy for chromosomes 7 and 17, and we attempted to clarify the relationship between EGFR, HER2, and TOP2A gene copy number and increased expression of their encoded proteins. Furthermore, we tried to address the relationship between alterations in EGFR, HER2, and TOP2A and chromosome polysomy.</p> <p>Methods</p> <p>One hundred cases of formalin fixed and paraffin embedded tumor tissues from Chinese gastric carcinoma patients were investigated by immunohistochemistry and fluorescence in situ hybridization (FISH) methods.</p> <p>Results</p> <p>Forty-two percent of the cases showed EGFR overexpression; 16% showed EGFR FISH positive; 6% showed HER2 overexpression; and 11% showed HER2 gene amplification, including all six HER2 overexpression cases. TOP2A nuclear staining (nuclear index, NI) was determined in all 100 tumors: NI values ranged from 0.5 – 90%. Three percent of the tumors showed TOP2A gene amplification, which were all accompanied by HER2 gene amplification. Nineteen percent of the tumors showed chromosome 7 polysomy, and 16% showed chromosome 17 polysomy. Chromosome 7 polysomy correlated significantly with EGFR FISH-positivity, but was not associated with EGFR overexpression. HER2 overexpression associated significantly with HER2 gene amplification. TOP2A gene amplification was significantly associated with HER2 gene amplification. No relationship was found between alterations in the <it>EGFR</it>, <it>HER2</it>, and <it>TOP2A </it>genes and clinicopathologic variables of gastric carcinoma.</p> <p>Conclusion</p> <p>The data from our study suggest that chromosome 7 polysomy may be responsible for increased EGFR gene copy number in gastric carcinomas, and that HER2 gene amplification may be the major reason for HER2 protein overexpression. A combined investigation of the gene status of EGFR, HER2, and TOP2A should facilitate the identification of a target therapeutic regimen for gastric carcinoma patients.</p

    Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study)

    Get PDF
    BACKGROUND: The conventional treatment options for advanced gastric patients remain unsatisfactory in terms of response rate, response duration, toxicity, and overall survival benefit. The purpose of this phase II study was to evaluate the activity and safety of cetuximab combined with cisplatin and docetaxel as a first-line treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma. METHODS: Untreated patients with histologically confirmed advanced gastric or gastro-oesophageal adenocarcinoma received cetuximab at an initial dose of 400 mg m(-2) i.v. followed by weekly doses of 250 mg m(-2), cisplatin 75 mg m(-2) i.v. on day 1, docetaxel 75 mg m(-2) i.v. on day 1, every 3 weeks, for a maximum of 6 cycles, and then cetuximab maintenance treatment was allowed in patients with a complete response, partial response, or stable disease. RESULTS: Seventy-two patients (stomach 81.9% and gastro-oesophageal junction 18.1%; locally advanced disease 4.2%; and metastatic disease 95.8%) were enrolled. The ORR was 41.2% (95% CI, 29.5-52.9). Median time to progression was 5 months (95% CI, 3.7-5.4). Median survival time was 9 months (95% CI, 7-11). The most frequent grades 3-4 toxicity was neutropenia (44.4%). No toxic death was observed. CONCLUSIONS: The addition of cetuximab to the cisplatin/docetaxel regimen improved the ORR of the cisplatin/docetaxel doublet in the first-line treatment of advanced gastric and gastro-oesophageal junction adenocarcinoma, but this combination did not improve the TTP and OS. The toxicity of cisplatin/docetaxel chemotherapy was not affected by the addition of cetuximab

    Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Innate immunity is the ancient defense system of multicellular organisms against microbial infection. The basis of this first line of defense resides in the recognition of unique motifs conserved in microorganisms, and absent in the host. Peptidoglycans, structural components of bacterial cell walls, are recognized by Peptidoglycan Recognition Proteins (PGRPs). PGRPs are present in both vertebrates and invertebrates. Although some evidence for similarities and differences in function and structure between them has been found, their evolutionary history and phylogenetic relationship have remained unclear. Such studies have been severely hampered by the great extent of sequence divergence among vertebrate and invertebrate PGRPs. Here we investigate the birth and death processes of PGRPs to elucidate their origin and diversity.</p> <p>Results</p> <p>We found that (i) four rounds of gene duplication and a single domain duplication have generated the major variety of present vertebrate PGRPs, while in invertebrates more than ten times the number of duplications are required to explain the repertoire of present PGRPs, and (ii) the death of genes in vertebrates appears to be almost null whereas in invertebrates it is frequent.</p> <p>Conclusion</p> <p>These results suggest that the emergence of new <it>PGRP </it>genes may have an impact on the availability of the repertoire and its function against pathogens. These striking differences in PGRP evolution of vertebrates and invertebrates should reflect the differences in the role of their innate immunity. Insights on the origin of <it>PGRP </it>genes will pave the way to understand the evolution of the interaction between host and pathogens and to lead to the development of new treatments for immune diseases that involve proteins related to the recognition of self and non-self.</p

    Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)

    Get PDF
    Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems
    corecore