179 research outputs found

    Energy analysis of wall materials using building information modeling (BIM) of public buildings in the tropical climate countries

    Get PDF
    During the previous two decades, the energy saving potential using systematic building management is considered to be important which should be considered through the building lifecycle. Among the wide range types of different buildings, Public buildings are considered as one of the biggest energy-consuming sector in the world and major part of this amount is used by the air conditioning system especially in tropical climates. The most effective decisions related to sustainable design of a building facility are made in the feasibility and early design stages. Building Information Modeling (BIM) can expedite this process and provide the opportunity of testing and assessing different design alternatives and materials selection that may impact on energy performance of buildings. This paper aims at evaluating the efficiency of various types of wall materials with regard to theirs properties on energy saving. The case study in this paper is modeled by means of BIM application and then simulated by software, which is appropriate for energy analysis. The current energy consumption patterns of this case identified and shifted to the optimized level of energy usages by changing the walls materials to find most optimized of walls materials. Modification most optimized wall materials and energy analysis indicated 9347 Wh in Per meter square of electrical energy saving

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Component Based Performance Modelling of the Wireless Routing Protocols

    Get PDF
    In this paper, we propose a component based methodology for modelling and design of wireless routing protocols. Componentization is a standard methodology for analysis and synthesis of complex systems. Throughout the paper, we use Optimized Link State Routing (OLSR) protocol as a case study to demonstrate effectiveness of our methodology. We focus on modelling of three main components: neighborhood discovery, selector of topology information to disseminate, and the path selection components. For each component, we identify the inputs, outputs, and a generic methodology for modelling. Using the neighborhood discovery component, we will present our design methodology and design a modified enhanced version of the OLSR NDC, and compare its performance to the neighborhood discovery component of the OLSR protocol

    3-Fluoro­anilinium 4-methyl­benzene­sulfonate

    Get PDF
    In the crystal structure of the title salt, C6H7FN+·C7H7O3S−, the components are linked into chains along [010] via N—H⋯O hydrogen bonds. Further stabilization is is provided by weak π–π stacking inter­actions, with a centroid–centroid distance of 3.7156 (12) Å
    corecore